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Foreword 

This is not a textbook. It is not a contest booklet. It is not a set of lessons for 
classroom instruction. It does not give a series of projects for students, nor does it 
offer a development of parts of mathematics for self-instruction. 

So what kind of book is this? It is a book produced by a remarkable cul­
tural circumstance, which fostered the creation of groups of students, teachers, and 
mathematicians, called mathematical circles, in the former Soviet Union. It is pred­
icated on the idea that studying mathematics can generate the same enthusiasm as 
playing a team sport, without necessarily being competitive. 

Thus it is more like a book of mathematical recreations-except that it is more 
serious. Written by research mathematicians holding university appointments, it is 
the result of these same mathematicians' years of experience with groups of high 
school students. The sequences of problems are structured so that virtually any 
student can tackle the first few examples. Yet the same principles of problem solving 
developed in the early stages make possible the solution of extremely challenging 
problems later on. In between, there are problems for every level of interest or 
ability. 

The mathematical circles of the former Soviet Union, and particularly of Lenin­
grad (now St. Petersburg, where these problems were developed) are quite different 
from most math clubs in the United States. Typically, they were run not by teach­
ers, but by graduate students or faculty members at a university, who considered 
it part of their professional duty to show younger students the joys of mathemat­
ics. Students often met far into the night, and went on weekend trips or summer 
retreats together, achieving a closeness and mutual support usually reserved in our 
country for members of athletic teams. 

We are fortunate to be living in a time when Russians and Americans can easily 
communicate and share their cultures. The development of mathematics education 
is an aspect of Russian culture from which we have much to learn. It is still very 
rare to find research mathematicians in America willing to devote time, energy, and 
thought to the development of materials for high school students. 

So we must borrow from our Russian colleagues. The present book is the result 
of such borrowings. Some chapters, such as the one on the triangle inequality, can be 
used directly in American classrooms, to supplement the development in the usual 
textbooks. Others, such as the discussion of graph theory, stretch the curriculum 
with gems of mathematics which are not usually touched on in the classroom. Still 
others, such as the chapter on games, offer a rich source of extra-curricular materials 
with more structure and meaning than many. 

Each chapter gives examples of mathematical methods in some of their barest 
forms. A game of nim, which can be enjoyed and even analyzed by a third grader, 

vii 
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turns out to be the same as a game played with a single pawn on a chessboard. 
This becomes a lesson for seventh graders in restating problems, then offers an 
introduction to the nature of isomorphism for the high school student. The Pigeon 
Hole Principle, among the simplest yet most profound mathematics has to offer, 
becomes a tool for proof in number theory and geometry. 

Yet the tone of the work remains light. The chapter on combinatorics does not 
require an understanding of generating functions or mathematical induction. The 
problems in graph theory, too, remain on the surface of this important branch of 
mathematics. The approach to each topic lends itself to mind play, not weighty 
reflection. And yet the work manages to strike some deep notes. 

It is this quality of the work which the mathematicians of the former Soviet 
Union developed to a high art. The exposition of mathematics, and not just its 
development, became a part of the Russian mathematician's work. This book is 
thus part of a literary genre which remains largely undeveloped in the English 
language. 

Mark Saul, Ph.D. 
Bronxville Schools 

Bronxville, New York 



Preface to the Russian Edition 

§ 1. Introduction 

This book was originally written to help people in the former Soviet Union 
who dealt with extracurricular mathematical education: school teachers, university 
professors participating in mathematical education programs, various enthusiasts 
running mathematical circles, or people who just wanted to read something both 
mathematical and recreational. And, certainly, students can also use this book 
independently. 

Another reason for writing this book was that we considered it necessary to 
record the role played by the traditions of mathematical education in Leningrad 
(now St. Petersburg) over the last 60 years. Though our city was, indeed, the cradle 
of the olympiad movement in the USSR (having seen the very first mathematical 
seminars for students in 1931-32, and the first city olympiad in 1934), and still 
remains one of the leaders in this particular area, its huge educational experience 
has not been adequately recorded for the interested readers. 

In spite of the stylistic variety of this book's material, it is methodologically 
homogeneous. Here we have, we believe, all the basic topics for sessions of a mathe­
matical circle for the first two years of extracurricular education (approximately, for 
students of age 12-14). Our main objective was to make the preparation of sessions 
and the gathering of problems easier for the teacher (or any enthusiast willing to 
spend time with children, teaching them non-standard mathematics). We wanted 
to talk about mathematical ideas which are important for students, and about how 
to draw the students' attention to these ideas. 

We must emphasize that the work of preparing and leading a session is itself 
a creative process. Therefore, it would be unwise to follow our recommendations 
blindly. However, we hope that your work with this book will provide you with 
material for most of your sessions. The following use of this book seems to be 
natural: while working on a specific topic the teacher reads and analyzes a chapter 
from the book, and after that begins to construct a sketch of the session. Certainly, 
some adjustments will have to be made because of the level of a given group of 
students. As supplementary sources of problems we recommend [13, 16, 24, 31, 
33], and [40]. 

We would like to mention two significant points of the Leningrad tradition of 
extracurricular mathematical educational activity: 
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(1) Sessions feature vivid, spontaneous communication between students and 
teachers, in which each student is treated individually, if possible. 

(2) The process begins at a rather early age: usually during the 6th grade (age 
11-12), and sometimes even earlier. 

This book was written as a guide especially for secondary school students and 
for their teachers. The age of the students will undoubtedly influence the style of 
the sessions. Thus, a few suggestions: 

A) We consider it wrong to hold a long session for younger students devoted to 
only one topic. We believe that it is helpful to change the direction of the activity 
even within one session. 

B) It is necessary to keep going back to material already covered. One can 
do this by using problems from olympiads and other mathematical contests (see 
Appendix A). 

C) In discussing a topic, try to emphasize a few of the most basic landmarks 
and obtain a complete understanding (not just memorization!) of these facts and 
ideas. 

D) We recommend constant use of non-standard and "gamelike" activities in 
the sessions, with complete discussion of solutions and proofs. It is important also 
to use recreational problems and mathematical jokes. These can be found in (5-7, 
16-18, 26-30]. 

We must mention here our predecessors-those who have tried earlier to create 
a sort of anthology for Leningrad mathematical circles. Their books (32] and (43], 
unfortunately, did not reach a large number of readers interested in mathematics 
education in secondary school. 

In 1990-91 the original version of the first part of our book was published by the 
Academy of Pedagogical Sciences of USSR as a collection of articles (21] written by 
a number of authors. We would like to thank all our colleagues whose materials we 
used when working on the preparation of the present book: Denis G. Benua, Igor 
B. Zhukov, Oleg A. Ivanov, Alexey L. Kirichenko, Konstantin P. Kokhas, Nikita 
Yu. Netsvetaev, and Anna G. Frolova. 

We also express our sincere gratitude to Igor S. Rubanov, whose paper on in­
duction written especially for the second part of the book (21] (but never published, 
unfortunately) is included here as the chapter "Induction". 

Our special thanks go to Alexey Kirichenko whose help in the early stages of 
writing this book cannot be overestimated. We would also like to thank Anna 
Nikolaeva for drawing the figures. 

§2. Structure of the book 

The book consists of this preface, two main parts, Appendix A "Mathematical 
Contests", Appendix B "Answers, Hints, Solutions", and Appendix C "References". 

The first part ("The First Year of Education") begins with Chapter Zero, con­
sisting of test questions intended mostly for students of ages 10-11. The problems 
of this chapter have virtually no mathematical content, and their main objective is 
to reveal the abilities of the students in mathematics and logic. The rest of the first 
part is divided into 8 chapters. The first seven of these are devoted to particular 
topics, and the eighth ("Problems for the first year") is simply a compilation of 
problems on a variety of themes. 
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The second part ("The Second Year of Education") consists of 9 chapters, some 
of which just continue the discussion in the first part (for example, the chapters 
"Graphs-2" and "Combinatorics-2"). Other chapters are comprised of material 
considered to be too complicated for the first year: "Invariants", "Induction", "In­
equalities" . 

Appendix A tells about five main types of mathematical contests popular in 
the former Soviet Union. These contests can be held at sessions of mathematical 
circles or used to organize contests between different circles or even schools. 

Advice to the teacher is usually given under the remark labelled "For teach­
ers". Rare occasions of "Methodological remarks" contain mostly recommen­
dations about the methodology of problem solving: they draw attention to the basic 
patterns of proofs or methods of recognizing and classifying problems. 

§3. Technicalities and legend 

(1) The most difficult problems are marked with an asterisk (*). 
(2) Almost all of the problems are commented on in Appendix B: either a 

full solution or at least a hint and answer. If a problem is computational, then 
we usually provide only an answer. We do not give the solutions to problems for 
independent solution (this, in particular, goes for all the problems from Chapters 
8 and 17). 

(3) All the references can be found at the end of the book in the list of references. 
The books we recommend most are marked with an asterisk. 





CHAPTER 0 

Chapter Zero 

In this chapter we have gathered 25 simple problems. To solve them you do 
not need anything but common sense and the simplest calculational skills. These 
problems can be used at sessions of a mathematical circle to probe the logical and 
mathematical abilities of students, or as recreational questions. 

Problem 1. A number of bacteria are placed in a glass. One second later each 
bacterium divides in two, the next second each of the resulting bacteria divides 
in two again, et cetera. After one minute the glass is full. When was the glass 
half-full? 

Problem 2. Ann, John, and Alex took a bus tour of Disneyland. Each of them 
must pay 5 plastic chips for the ride, but they have only plastic coins of values 10, 
15, and 20 chips (each has an unlimited number of each type of coin). How can 
they pay for the ride? 

Problem 3. Jack tore out several successive pages from a book. The number of 
the first page he tore out was 183, and it is known that the number of the last page 
is written with the same digits in some order. How many pages did Jack tear out 
of the book? 

Problem 4. There are 24 pounds of nails in a sack. Can you measure out 9 pounds 
of nails using only a balance with two pans? (See Figure 1.) 

FIGURE 1 

Problem 5. A caterpillar crawls up a pole 75 inches high, starting from the ground. 
Each day it crawls up 5 inches, and each night it slides down 4 inches. When will 
it first reach the top of the pole? 
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Problem 6. In a certain year there were exactly four Fridays and exactly four 
Mondays in January. On what day of the week did the 20th of January fall that 
year? 
Problem 7. How many boxes are crossed by a diagonal in a rectangular table 
formed by 199 x 991 small squares? 

Problem 8. Cross out 10 digits from the number 1234512345123451234512345 so 
that the remaining number is as large as possible. 

Problem 9. Peter said: "The day before yesterday I was 10, but I will turn 13 in 
the next year." Is this possible? 
Problem 10. Pete's cat always sneezes before it rains. She sneezed today. "This 
means it will be raining," Pete thinks. Is he right? 
Problem 11. A teacher drew several circles on a sheet of paper. Then he asked 
a student "How many circles are there?" "Seven," was the answer. ucorrect! So, 
how many circles are there?" the teacher asked another student. "Five," answered 
the student. "Absolutely right!" replied the teacher. How many circles were really 
drawn on the sheet? 
Problem 12. The son of a professor's father is talking to the father of the profes­
sor's son, and the professor does not take part in the conversation. Is this possible? 
Problem 13. Three turtles are crawling along a straight road heading in the same 
direction. "Two other turtles are behind me," says the first turtle. "One turtle is 
behind me and one other is ahead," says the second. "Two turtles are ahead of me 
and one other is behind," says the third turtle. How can this be possible? 
Problem 14. Three scholars are riding in a railway car. The train passes through a 
tunnel for several minutes, and they are plunged into darkness. When they emerge, 
each of them sees that the faces of his colleagues are black with the soot that flew in 
through the open window. They start laughing at each other, but, all of a sudden, 
the smartest of them realizes that his face must be soiled too. How does he arrive 
at this conclusion? 
Problem 15. Three tablespoons of milk from a glass of milk are poured into a glass 
of tea, and the liquid is thoroughly mixed. Then three tablespoons of this mixture 
are poured back into the glass of milk. Which is greater now: the percentage of 
milk in the tea or the percentage of tea in the milk? 

Problem 16. Fbrm a magic square with the digits 1, 2, 3, 4, 5, 6, 7, 8, and 9; that 
is, place them in the boxes of a 3 x 3 table so that all the sums of the numbers 
along the rows, columns, and two diagonals are equal. 

Problem 17. In an arithmetic addition problem the digits were replaced with 
letters (equal digits by same letters, and different digits by different letters). The 
result is: LOVES+ LIVE= THERE. How many "loves" are ''there"? The answer 
is the maximum possible value of the word THERE. 
Problem 18. The secret service of The Federation intercepted a coded message 
from The Dominion which read: BLASE+LBSA =BASES. It is known that equal 
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digits are coded with equal letiers, and different digits with different letters. Two 
giant computers came up with two different answers to the riddle. Is this possible 
or does one of them need repair? 
Problem 19. Distribute 127 one dollar bills among 7 wallets so that any integer 
sum from 1 through 127 dollars can be paid without opening the wallets. 

Problem 20. Cut the figure shown in Figure 2 into four figures, each similar to 
the original with dimensions twice as small. 

FIGURE 2 

Problem 21. Matches are arranged to form the figure shown in Figure 3. Move 
two matches to change this figure into four squares with sides equal in length to 
one match. 

FIGURE 3 

Problem 22. A river 4 meters wide makes a 90° turn (see Figure 4). Is it possible 
to cross the river by bridging it with only two planks, each 3.9 meters long? 

L 
FIGURE 4 
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Problem 23. Is it possible to arrange six long round pencils so that each of them 
touches all the others? 

Problem 24. Using scissors, cut a hole in a sheet of ordinary paper (say, the size 
of this page) through which an elephant can pass. 

Problem 25. Ten coins are arranged as shown in Figure 5. What is the minimum 
number of coins we must remove so that no three of the remaining coins lie on the 
vertices of an equilateral triangle? 

FIGURE 5 



CHAPTER 1 

Parity 

An even number is said to have even parity, and an odd number, odd parity. 
This concept, despite its utmost simplicity, appears in the solution of the most 
varied sorts of questions. It turns out to be useful in the solution of many problems, 
including some which are quite difficult. 

The very simplicity of this theme makes it possible to pose interesting problems 
for students with almost no background. The same simplicity makes it even more 
important than usual to point out the common theme in all such problems. 

§1. Alternations 

Problem 1. Eleven gears are placed on a plane, arranged in a chain as shown (see 
Figure 6). Can all the gears rotate simultaneously? 

FIGURE 6 

Solution. The answer is no. Suppose that the first gear rotates clockwise. Then 
the second gear must rotate counter-clockwise, the third clockwise again, the fourth 
counter-clockwise, and so on. It is clear that the "odd" gears must rotate clock­
wise, while the "even" gears must rotate counter-clockwise. But then the first and 
eleventh gears must rotate in the same direction. This is a contradiction. 

The main idea in the solution to this problem is that the gears rotating clockwise 
and counter-clockwise alternate. Finding objects that alternate is the basic idea in 
the solution of the following problems as well. 

Problem 2. On a chessboard, a knight starts from square al, and returns there 
after making several moves. Show that the knight makes an even number of moves. 
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Problem 3. Can a knight start at square al of a chessboard, and go to square h8, 
visiting each of the remaining squares exactly once on the way? 

Solution. No, he cannot. At each move, a knight jumps from a square of one color 
to a square of the opposite color. Since the knight must make 63 moves, the last 
(odd) move must bring him to a square of the opposite color from the square on 
which he started. However, squares al and h8 are of the same color. 

Like Problem 3, many of the problems in this section deal with proofs that cer­
tain situations are impossible. Indeed, when a question asks whether some situation 
is possible, the answer in this section is invariably "no". This poses some difficulty 
for mathematically naive students. Their first reaction is either frustration that 
they cannot find the "correct" situation (fulfilling the impossible conditions) or a 
declaration that the situation is impossible, without a clear conception of what it 
might take to prove this. Here is a simple problem, related to the "odd and even" 
problems later in this section, which might clear up this point: 

Can you find five odd numbers whose sum is 100? 
A discussion can ensue, through which students are made aware that it is not 

just their own human failing that prevents them from finding this set of numbers, 
but a contradiction in the nature of the set itself. It is proof by contradiction that is 
at the basis of the students' confusion, as well as the notion of proof of impossibility. 
Problems in parity are a simple yet effective way to introduce both these concepts. 

Problem 4. A closed path is made up of 11 line segments. Can one line, not 
containing a vertex of the path, intersect each of its segments? 

Problem 5. Three hockey pucks, A, B, and C, lie on a playing field. A hockey 
player hits one of them in such a way that it passes between the other two. He does 
this 25 times. Can he return the three pucks to their starting points? 

Problem 6. Katya and her friends stand in a circle. It turns out that both 
neighbors of each child are of the same gender. If there are five boys in the circle, 
how many girls are there? 

Let us note an additional principle, which comes up in the solution of the 
previous problem: in a closed alternating chain of objects, there are as many objects 
of one type (boys) as there are of the other (girls). 

§2. Partitioning into pairs 

Problem 7. Can we draw a closed path made up of 9 line segments, each of which 
intersects exactly one of the other segments? 

Solution. If such a closed path were possible, then all the line segments could be 
partitioned into pairs of intersecting segments. But then the number of segments 
would have to be even. 

Let us single out the central point in this solution: if a set of objects can be 
partitioned into pairs, then there are evenly many of them. Here are some similar 
problems: 

Problem 8. Can a 5 x 5 square checkerboard be covered by 1 x 2 dominoes? 

Problem 9. Given a convex 101-gon which has an axis of symmetry, prove that 
the a.xis of symmetry passes through one of its vertices. What can you say about a 
10-gon with the same properties? 
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Problems 10 and 11 concern a set of dominoes consisting of 2 x 1 rectangles with 
0 to 6 spots on each square. All 28 possible pairs of numbers of spots (including 
doubles) are represented. The game is played by forming a chain in which squares 
of adjacent dominoes have equal numbers of spots. 

Problem 10. All the dominoes in a set are laid out in a chain (so that the number 
of spots on the ends of adjacent dominoes match). If one end of the chain is a 5, 
what is at the other end? 

Comment. A set of dominoes consists of 2 x 1 rectangles with 0 to 6 spots on 
each square. All 28 possible pairs of numbers of spots (including doubles) are 
represented. 

Problem 11. In a set of dominoes, all those in which one square has no spots are 
discarded. Can the remaining dominoes be arranged in a chain? 

Problem 12. Can a convex 13-gon be divided into parallelograms? 

Problem 13. Twenty-five checkers are placed on a 25 x 25 checkerboard in such a 
way that their positions are symmetric with respect to one of its diagonals. Prove 
that at least one of the checkers is positioned on that diagonal. 

Solution. If no checker occurred on the diagonal, then the checkers could be 
partitioned into pairs, placed symmetrically with respect to the diagonal. Therefore, 
there must be one (and in fact an odd number) of checkers on the diagonal. 

In solving this problem, students often have trouble understanding that there 
may be not just one, but any odd number of checkers on the diagonal. For this 
problem, we may formulate our assertion about partitions into pairs thus: if we 
form a number of pairs from a set of oddly many objects, then at least one object 
will remain unpaired. 

Problem 14. Let us now assume that the positions of the checkers in Problem 13 
are symmetric with respect to both diagonals of the checkerboard. Prove that one 
of the checkers is placed in the center square. 

Problem 15. In each box of a 15 x 15 square table one of the numbers 1, 2, 3, 
... , 15 is written. Boxes which are symmetric to one of the main diagonals contain 
equal numbers, and no row or column contains two copies of the same number. 
Show that no two of the numbers along the main diagonal are the same. 

§3. Odd and even 

Problem 16. Can one make change of a 25-ruble bill, using in all ten bills each 
having a value of 1, 3, or 5 rubles? 

Solution. It is not possible. This conclusion is based on a simple observation: the 
sum of evenly many odd numbers is even. A generalization of this fact is this: the 
parity of the sum of several numbers depends only on the parity of the number of 
its odd addends. If there are oddly (evenly) many odd addends, then the sum is 
odd (even). 

Problem 17. Pete bought a notebook containing 96 pages, and numbered them 
from 1 through 192. Victor tore out 25 pages of Pete's notebook, and added the 50 
numbers he found on the pages. Could Victor have gotten 1990 as the sum? 

Problem 18. The product of 22 integers is equal to 1. Show that their sum cannot 
be zero. 
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Problem 19. Can one form a "magic square" out of the first 36 prime numbers? 
A "magic square" here means a 6 x 6 array of boxes, with a number in each 

box, and such that the sum of the numbers along any row, column, or diagonal is 
constant. 

Problem 20. The numbers 1 through 10 are written in a row. Can the signs "+" 
and "-" be placed between them, so that the value of the resulting expression is 
O? 

Note that negative numbers can also be odd or even. 

Problem 21. A grasshopper jumps along a line. His first jump takes him 1 cm, 
his second 2 cm, and so on. Each jump can take him to the right or to the left. 
Show that after 1985 jumps the grasshopper cannot return to the point at which 
he started. 

Problem 22. The numbers 1, 2, 3, ... , 1984, 1985 are written on a blackboard. 
We decide to erase from the blackboard any two numbers, and replace them with 
their positive difference. After this is done several times, a single number remains 
on the blackboard. Can this number equal O? 

§4. Assorted problems 

Some more difficult problems are collected in this section. Their solutions use 
the ideas of parity, but also additional considerations. 

Problem 23. Can an ordinary 8 x 8 chessboard be covered with 1 x 2 dominoes 
so that only squares al and hB remain uncovered? 

Problem 24. A 17-digit number is chosen, and its digits are reversed, forming a 
new number. These two numbers are added together. Show that their sum contains 
at least one even digit. 

Problem 25. There are 100 soldiers in a detachment, and every evening three of 
them are on duty. Can it happen that after a certain period of time each soldier 
has shared duty with every other soldier exactly once? 

Problem 26. Forty-five points are chosen along line AB, all lying outside of 
segment AB. Prove that the sum of the distances from these points to point A is 
not equal to the sum of the distances of these points to point B. 

Problem 27. Nine numbers are placed around a circle: four l's and five O's. The 
following operation is performed on the numbers: between each adjacent pair of 
numbers is placed a 0 if the numbers are different, and a 1 if the numbers are the 
same. The "old" numbers are then erased. After several of these operations, can 
all the remaining numbers be equal? 

Problem 28. Twenty-five boys and 25 girl• are seated at a round table. Show 
that both neighbors of at least one student are boys. 

Problem 29. A snail crawls along a plane with constant velocity, turning through 
a right angle every 15 minutes. Show that the snail can return to its starting point 
only after a whole number of hours. 

Problem 30. Three grasshoppers play leapfrog along a line. At each turn, one 
grasshopper leaps over another, but not over two others. Can the grasshoppers 
return to their initial positions after 1991 leaps? (See Figure 7.) 
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FIGURE 7 

Problem 31. Of IOI coins, 50 are counterfeit, and differ from the genuine coins 
in weight by 1 gram. Peter has a scale in the form of a balance which shows the 
difference in weights between the objects placed in each pan. He chooses one coin, 
and wants to find out in one weighing whether it is counterfeit. Can he do this? 

Problem 32. Is it possible to arrange the numbers from 1 through 9 in a sequence 
so that there are oddly many numbers between 1 and 2, between 2 and 3, ... , and 
between 8 and 9? 





CHAPTER 2 

Combinatorics-I 

How many ways are there to drive from A to B? How many words does the 
Hermetian language contain? How many "lucky" six-digit numbers are there? How 
many ... ? These and many other similar questions will be discussed in this chapter. 

We will start with a few simple problems. 

Problem 1. There are five different teacups and three different tea saucers in the 
"Tea Party" store. How many ways are there to buy a cup and a saucer? 

Solution. First, let us choose a cup. Then, to complete the set, we can choose any 
of three saucers. Thus we have 3 different sets containing the chosen cup. Since 
there are five cups, we have 15 different sets (15 = 5 · 3). 

Problem 2. There are also four different teaspoons in the "Tea Party" store. How 
many ways are there to buy a set consisting of a cup, a saucer, and a spoon? 

Solution. Let us start with any of the 15 sets from the previous problem. There 
are four different ways to complete it by choosing a spoon. Therefore, the number 
of all possible sets is 60 (since 60 = 15 · 4 = 5 · 3 · 4). 

In just the same way we can solve the following problem. 

Problem 3. There are three towns A, B, and C, in Wonderland. Six roads go 
from A to B, and four roads go from B to C (see Figure 8). In how many ways can 
one drive from A to C? 
Answer. 24 = 6 · 4. 

B 

FIGURE 8 

11 
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In the solution to Problem 4 we use a new idea. 

Problem 4. A new town called D and several new roads were built in Wonderland 
(see Figure 9). How many ways are there to drive from A to C now? 

B 

FIGURE 9 

Solution. Co11•ider two ca.•es: our route passes either through B or through D. In 
each case it is quite easy to calculate the number of routes-if we drive through B 
then we have 24 ways to drive from A to C; otherwise we have 6 ways. To obtain 
the a11•wer we must add up these two numbers. Thus we have 30 possible routes. 

Dividing the problem into several cases is a very useful idea. It also helps in 
solving Problem 5. 

Problem 5. There are five different teacups, three saucers, and four tea.•poo11• in 
the "Tea Party" store. How many ways are there to buy two items with different 
names? 

Solution. Three cases are possible: we buy a cup and a saucer, or we buy a cup 
and a spoon, or we buy a saucer and a spoon. It is not difficult to calculate the 
number of ways each of these cases can occur: 15, 20, and 12 ways respectively. 
Adding, we have the answer: 4 7. 

For teachers. The main goal which the teacher must pursue during a discussion 
of these problems is making the students understand when we must add the numbers 
of ways and when we must multiply them. Of course, many problems should be 
presented (some can be found at the end of this chapter (Problems 28-32), in [49], 
or created by the teacher). Some possible subjects are shopping, traffic maps, 
arrangement of objects, etc. 
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Problem 6. We call a naturai number "odd-looking" if all of its digits are odd. 
How many four-digit odd-looking numbers are there? 

Solution. It is obvious that there are 5 one-digit odd-looking numbers. We can 
add another odd digit to the right of any odd-looking one-digit number in five 
ways. Thus, we have 5 · 5 = 25 two-digit odd-looking numbers. Similarly, we get 
5 · 5 · 5 = 125 three-digit odd-looking numbers, and 5 · 5 · 5 · 5 = 54 = 625 four-digit 
odd-looking numbers. 

For teachers. In the last problem the answer has the form mn. Usually, an 
answer of this type results from problems where we can place an element of some 
given m-element set in each of n given places. In such problems the students may 
encounter difficulty distinguishing the two numbers m and n, therefore confusing 
the base and the exponent. 

Here are four more similar problems. 

Problem 7. We toss a coin three times. How many different sequences of heads 
and tails can we obtain? 
Answer. 23 . 

Problem 8. Each box in a 2 x 2 table can be colored black or white. How many 
different colorings of the table are there? 
Answer. 24 . 

Problem 9. How many ways are there to fill in a Special Sport Lotto card? In this 
lotto you must predict the results of 13 hockey games, indicating either a victory 
for one of two teams, or a draw. 
Answer. 313 . 

Problem 10. The Hermetian alphabet consists of only three letters: A, B, and C. 
A word in this language is an arbitrary sequence of no more than four letters. How 
many words does the Hermetian language contain? 

Hint. Calculate separately the numbers of one-letter, two-letter, three-letter, and 
four-letter words. 
Answer. 3 + 32 + 33 + 34 = 120. 

Let us continue with another set of problems. 

Problem 11. A captain and a deputy captain must be elected in a soccer team 
with 11 players. How many ways are there to do this? 

Solution. Any of 11 players can be elected as captain. After that, any of the 
10 remaining players can be chosen for deputy. Therefore, we have 11 · 10 = 110 
different outcomes of electiorL•. 

This problem differs from the previous ones in that the choice of captain influ­
ences the set of candidates for deputy position, since the captain carmot be his or 
her own deputy. Thus, the choices of captain and deputy are not independent (as 
the choices of a cup and a saucer were in Problem 1, for example). 

Below we have four more problems on the same theme. 

Problem 12. How many ways are there to sew one three-colored flag with three 
horizontal strips of equal height if we have pieces of fabric of six colors? We can 
distinguish the top of the flag from the bottom. 
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Solution. There are six possible choices of a color for the bottom strip. After that 
we have only five colors to use for the middle strip, and then only four colors for 
the top strip. Therefore, we have 6 · 5 · 4 = 120 ways to sew the flag. 

Problem 13. How many ways are there to put one white and one black rook on 
a chessboard so that they do not attack each other? 

Solution. The white rook can be placed on any of the 64 squares. No matter 
where it stands, it attacks exactly 15 squares {including the square it stands on). 
Thus we are left with 49 squares where the black rook can be placed. Hence there 
are 64 · 49 = 3136 different ways. 

Problem 14. How many ways are there to put one white and one black king on a 
chessboard so that they do not attack each other? 

Solution. The white king can be plaoed on any of the 64 squares. However, the 
number of squares it attacks depends on its position. Therefore, we have three 
cases: 

a) If the white king stands in one of the corners then it attacks 4 squares 
{including the square it stands on). We have 60 squares left, and we can place the 
black king on any of them. 

b) If the white king stands on the edge of the chea•board but not in the corner 
(there are 24 squares of this type) then it attacks 6 squares, and we have 58 squares 
to place the black king on. 

c) If the white king does not stand on the edge of the che&•board (we have 36 
squares of this type) then it attacks 9 squares, and only 55 squares are left for the 
black king. 

Finally, we have 4 · 60 + 24 · 58 + 36 · 55 = 3612 ways to put both kings on the 
chessboard. 

Let us now calculate the number of ways to arrange n objects in a row. Such 
arrangements are called permutations, and they play a significant role in combina­
torics and in algebra. But before this we must digress a little bit. 

If n is a natural number, then n! (pronounced n factorial ) is the 
product 1 · 2 · 3 · ... · n. Therefore, 2! = 2, 3! = 6, 4! = 24, and 5! = 120. For 
convenience of calculations and for consistency, O! is defined to be equal to 1. 

Methodological remark. Before working with permutations one must know 
the definition of factorial and learn how to deal with this function. The following 
exercises may be useful. 
Exercise 1. Simplify the expressions a) 10! · 11; b) n! · (n + 1). 
Exercise 2. a) Calculate 100!/98!; b} Simplify n!/(n - 1)!. 
Exercise 3. Prove that if pis a prime number, then (p- l)! is not divisible by p. 

Now let us go back to the permutations. 

Problem 15. How many three-digit numbers can be written using the digits 1, 2, 
and 3 (without repetitio11•) in some order? 

Solution. Let us reason just the same way we did in solving Problem 12. The first 
digit can be any of the three given, the second can be any of the two remaining 
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digits, and the third must be the one remaining digit. Thus we have 3 · 2 · 1 = 3! 
numbers. 

Problem 16. How many ways are there to lay four balls, colored red, black, blue, 
and green, in a row? 

Solution. The first place in the row can be occupied by any of the given ball•. 
The second can be occupied by any of the three remaining balls, et cetera. Finally, 
we have the answer (similar to that of Problem 15): 4 · 3 · 2 · 1 = 4!. 

Analogously we can prove that n different objects can be la.id out in a row in 
n· (n-1)· (n-2)· ... ·2· l ways; that is 

the number of permutations of n objects is n!. 

For convenience of notation we introduce the following convention. Any finite 
sequence of English letters will be called "a word" (whether or not it can be found 
in a dictionary). For example, we can form six words using the letters A, B, and C 
each exactly once: ABC, ACB, BAC, BCA, CAB, and CBA. In the following five 
problems you must calculate the number of different words that can be obtained 
by rearranging the letters of a particular word. 

Problem 17. "VECTOR". 

Solution. Since all the letters in this word are different, the answer is 6! words. 

Problem 18. "TRUST". 

Solution. This word contains two letters T, and all the other letters are different. 
Let us temporarily think of these letters T as two different letters T 1 and T 2 . Under 
this assumption we have 5! = 120 different word•. However, any two words which 
can be obtained from each other just by transposing the letters T 1 and T 2 are, in 
fact, identical. Thus, our 120 words split into pairs of identical words. This means 
that the answer is 120/2 = 60. 

Problem 19. "CARAVAN". 

Solution. Thinking of the three letters A in this word as different letters A1, A2 , 

and A3, we get 8! different words. However, any words which can be obtained from 
each other just by transposing the letters A; are identical. Since the letters A; can 
be rearranged in their places in 3! = 6 ways, all 8! words split into groups of 3! 
identical words. Therefore the answer is 8!/3!. 

Problem 20. "CLOSENESS". 

Solution. We have three letters S and two letters E in this word. Temporarily 
thinking of all of them as different letters, we have 9! words. When we remember 
that the letters E are identical the number of different words reduces to 9!/2!. Then, 
recalling that the letters Sare identical, we come to the final answer: 9!/(2! · 3!). 

Problem 21. "MATHEMATICAL". 
Answer. 12!/(3! · 2! · 2!). 

This set of problems about words demonstrates one very interesting and impor­
tant idea-the idea of multiple counting. That is, instead of counting the number 
of objects we are interested in, it may be easier to count some other objects whose 
number is some known multiple of the number of objects. 

Here are four more problems using this method. 
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Problem 22. There are 20 towns in a certain country, and every pair of them is 
connected by an air route. How many air routes are there? 

Solution. Every route connects two tow11•. We can choose any of the 20 towns in 
the country (say, town A) as the beginning of a route, and we have 19 remaining 
tow11• to choose the end of a route (say, town B) from. Multiplying, we have 
20 · 19 = 380. However, this calculation counted every route AB twice: when A 
was chosen as the beginning of the route, and when B was chosen as the beginning. 
Hence, the number of routes is 380/2 = 190. 

A similar problem is discussed in the chapter "Graphs--1" where we count the 
number of edges of a graph. 

Problem 23. How many diagonals are there in a convex n-gon? 

Solution. Any of the n vertices can be chosen as the first endpoint of a diagonal, 
and we have n - 3 vertices to choose from for the second end (any vertex, except 
the chosen one and its two neighbors). Counting the diago!Lals this way, we have 
counted every diago!Lal exactly twice. Hence, the answer is n( n - 3) /2. (See Figure 
10.) 

FIGURE 10 

Problem 24. A "necklace" is a circular string with several beads on it. It is 
allowed to rotate a necklace but not to turn it over. How many different necklaces 
can be made using 13 different beads? 

Solution. Let us first a.•sume that it is prohibited to rotate the necklace. Then it 
is clear that we have 13! different necklaces. However, any arrangement of beads 
must be considered identical to those 12 that can be obtained from it by rotation. 
(See Figure 11.) 
Answer: 13!/13 = 12!. 

Problem 25. Assume now that it is allowed to turn a necklace over. How many 
necklaces can be made using 13 different beads? 

Solution. Turning the necklace over divides the number of necklaces by 2. 
Answer: 12!/2. 
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FIGURE 11 

The following problem illustrates another important combinatorial idea. 

Problem 26. How many six-digit numbers have at least one even digit? 

Solution. Instead of counting the numbers with at lea.•t one even digit, let us find 
the number of six-digit numbers that do not possess this property. Since these are 
exactly the numbers with all their digits odd, there are 56 = 15625 of them (see 
Problem 6). Since there are 900000 six-digit numbers in all, we conclude that the 
number of six-digit numbers with at least one even digit is 900000-15625 = 884375. 

The main idea in this solution wa.• to use the method of complements; that is, 
counting (or, considering) the "unrequested" objects instead of those "requested". 

' Here is another problem which can be solved using this method. 

Problem 27. There are six letters in the Hermetian language. A word is any 
sequence of six letters, some pair of which are the same. How many words are there 
in the Hermetian language? 
Answer. 66 - 6!. 

For teachers. In conclusion we would like to note that it is rea..onable to 
devote a separate session to any idea which ties together the problems of each set 
in this chapter (and, perhaps, with other themes more distant from combinatorics). 
We also recommend reviewing the material already covered in previous sessions. 
For this rea.•on we present here a list of problems for independent solution and for 
homework. In addition, you can take problems from [49] or create them yourself. 

Problems for independent solution 

Problem 28. There are five types of envelopes and four types of stamps in a post 
office. How many ways are there to buy an envelope and a stamp? 
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Problem 29. How many ways are there to choose a vowel and a consonant from 
the word "RJNGER"? 

Problem 30. Seven nouns, five verbs, and two adjectives are written on a black­
board. We can form a sentence by choosing one word of each type, and we do not 
care about how much sense the sentence makes. How many ways are there to do 
this? 
Problem 31. Each of two novice collectors has 20 stamps and 10 postcards. We 
call an exchange fair if they exchange a stamp for a stamp or a postcard for a 
postcard. How many ways are there to carry out one fair exchange between these 
two collectors? 
Problem 32. How many six-digit numbers have all their digits of equal parity (all 
odd or all even)? 
Problem 33. In how many ways can we send six urgent letters if we can use three 
messengers and each letter can be given to any of them? 

Problem 34. How many ways are there to choose four cards of different suits and 
different values from a deck of 52 cards? 
Problem 35. There are five books on a shelf. How many ways are there to arrange 
some (or all) of them in a stack? The stack may consist of a single book. 
Problem 36. How many ways are there to put eight rooks on a chessboard so that 
they do not attack each other? 
Problem 37. There are N boys and N girls in a dance class. How many ways are 
there to arrange them in pairs for a dance? 
Problem 38. The rules of a chess tournament say that each contestant must play 
every other contestant exactly once. How many games will be played if there are 
18 participants? 

Problem 39. How many ways are there to place a) two bishops; b) two knights; 
c) two queens on a chessboard so that they do not attack each other? 
Problem 40. Mother ha." two apples, three pears, and four oranges. Every morn­
ing, for nine days, she gives one fruit to her son for breakfast. How many ways are 
there to do this? 
Problem 41. There are three rooms in a dormitory: one single, one double, and 
one for four students. How many ways are there to house seven students in these 
rooms? 
Problem 42. How many ways are there to place a set of chess pieces on the first 
row of a chessboard? The set consists of a king, a queen, two identical rooks, two 
identical knights, and two identical bishops. 
Problem 43. How many "words" can be written using exactly five letters A and 
no more than three letters B (and no other letters)? 
Problem 44. How many ten-digit numbers have at lea."t two equal digits? 
Problem 45: Do seven-digit numbers with no digits 1 in their decimal represen­
tations constitute more than 503 of all seven-digit numbers? 
Problem 46. We toss a die three times. Among all possible outcomes, how many 
have at least one occurrence of six? 
Problem 47. How many ways are there to split 14 people into seven pairs? 
Problem 48! How many nine-digit numbers have an even sum of their digits? 



CHAPTER 3 

Divisibility and Remainders 

For teachers. This theme is not so recreational as some others, yet it contains 
large amounts of important theoretical material. Try to introduce elements of play 
in your sessions. Even very routine problems like the factoring of integers can be 
turned into a contest by asking "Who can factor this huge number first?" or "Who 
can find the greatest prime divisor of this number first?" Thus, sessions devoted 
to this topic must be prepared more carefully than others. Since divisibility also 
enters into the school curriculum, you can use the knowledge acquired by students 
there. 

§1. Prime and composite numbers 

Among natural numbers we can di~tinguish prime and composite numbers. A 
number is composite if it is equal to the product of two smaller natural numbers. 
For example, 6 = 2 · 3. Otherwise, and if the number is not equal to 1, it is called 
prime. The number 1 is neither prime nor composite. 

Prime numbers are like "bricks", which you can use to construct all natural 
numbers. How can this be done? Let us consider the number 420. It is certainly 
composite. It can be represented, for instance, as 42 · 10. But each of the numbers 
42 and 10 is composite, too. Indeed, 42 = 6 · 7, and 10 = 2 · 5. Since 6 = 2 · 3, we 
have 420 = 42 · 10 = 6 · 7 · 2 · 5 = 2 · 3 · 7 · 2 · 5 = 2 · 2 · 3 · 5 · 7 (see Figure 12). This 
is the complete "decomposition" of our number (its representation as a product of 
prime numbers). 

FIGURE 12 

It is clear that we can factor any natural number greater than 1 in the same 
way. We just keep factoring the numbers we have into pairs of smaller numbers 
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as long as we can (and if any one of the factors cannot be represented as such a 
product, then it i• a prime factor). 

But what if we try to factor the number 420 in some other way? For example, 
we can start with 420 = 15 · 28. It may surprise you that we will always end up with 
the same representation (products which differ only in the order of their factors are 
co11•idered identical-we usually arrange the factors in increasing order). 

This may seem evident, but it is not easy to prove. It is called the Funda­
mental Theorem of Arithmetic: any natural number different from 1 can be 
uniquely represented as a product of prime numbers in increasing order. 

For teachers. Most of the contents of this section are connected with the 
Fundamental Theorem of Arithmetic. 

Students should understand that the properties of divisibility are almost com­
pletely determined by the representation of a natural number as the product of 
prime numbers. The following exercises will help. 

1. Is 29 • 3 divisible by 2? 
Answer. Yes, since 2 i• one of the factors in the decomposition of the given number. 

2. fa 29 • 3 divisible by 5? 
Answer. No, since the decomposition of this number does not contain the prime 
number 5. 

3. Is 29 · 3 divisible by 8? 
Answer. Yes, since 8 = 23, and there are nine 2's in the decomposition of the 
given number. 

4. fa 29 • 3 divisible by 9? 
Answer. No, since 9 = 3 · 3, and there is only one 3 in the decomposition of the 
given number (see Figure 13). 

3 

2 2 
2 

5. IB 29 · 3 divisible by 6? 
Answer. Yes, since 6 = 2 · 3, and the decomposition of the given number contains 
both the prime numbers 2 and 3 (see Figure 14). 

6. fa it true that if a natural number is divi•ible by 4 and by 3, then it must be 
divi•ible by 4 · 3 = 12? 
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FIGURE 14 

Answer. Yes. Indeed, the decomposition of a natural number which is divisible 
by 4 must contain at least two 2's. Since this number is also divisible by 3, ther~ is 
also at least one 3. Therefore, our number is divisible by 3 · 2 · 2 = 12. 

7. Is it true that if a natural number is divisible by 4 and by 6, then it must be 
divisible by 4 · 6 = 24? 
Answer. No. For example, the number 12 can serve as a counterexample. The 
rea.'lOn is that if a number is divisible by 4, then its decomposition contains at lea.•t 
two 2's; if the same number is divisible by 6, then it mea11• that its decomposition 
contains 2 and 3. Therefore, we can be sure that the decomposition has two 2's 
(but not necessarily three!) and 3, so we can only claim divisibility by 12. 

8. The number A is not divisible by 3. Is it p0&•ible that the number 2A is divisible 
by 3? 
Answer. No, since 3 does not belong to the decomposition of A, and, therefore, 
does not belong to the decomposition of 2A. 

9. The number A is even. Is it true that 3A must be divisible by 6? 
Answer. Yes, since both 2 and 3 belong to the decomposition of the number 3A. 

10. The number 5A is divisible by 3. Is it true that A must be divisible by 3? 
Answer. Yes, since the decomposition of 5A contains 3, while the decomposition 
of 5 does not. 

11. The number 15A is divisible by 6. fa it true that A must be divisible by 6? 
Answer. No. For example, A might be 2. The reason is that the number 3, which 
is one of the prime factors of the number 6, also belongs to the decomposition of 
the number 15. Thus we can only be sure that A is even. 

IMPORTANT DEFINITION 

Two natural numbers are called relatively prime, or coprime, if they have no 
common divisors greater than 1. 

For example, two different prime numbers are, of course, relatively prime. Also, 
the number 1 is relatively. prime to any other natural number. 
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Using reasoning similar to that used in exercises 6 and 10, we can prove the 
following two facts. 

a) If some natural number is divisible by two relatively prime num­
bers p and q, then it is divisible by their product pq. 

b) If the number pA is divisible by q, where p and q are relatively 
prime, then A is also divisible by q. 

For teachers. Students should discuss and solve a few examples. Problems 
IL•ing relatively prime numbers can be found at the end of the section. 

TWO MORE IMPORTANT DEFINITIONS 

1. The Greatest Common Divisor (G.C.D. or gcd(x, y)) of two natural numbers 
is . . . what do you think? ... the greatest natural number which divides them both. 

2. The Least Common Multiple (L.C.M. or Icm(x, y)) of two natural numbers 
is . . . guess again . . . the least natural number which is divisible by both of them. 

For example, gcd(18, 24) = 6, Icm(l8, 24) = 72. 
These definitions allow us to state a few more exercises. 

12. Given the numbers A = 23 . 310 . 5. 72 and B = 25 . 3. 11 find gcd(A, B). 
Answer. gcd(A, B) = 24 = 23 · 3. This is the common part ("intersection") of the 
decompositions of the numbers. 

13. Given the numbers A= 28 · 53 · 7 and B = 25 · 3 · 57 find Icm(A, B). 
Answer. Icm(A, B) = 420000000 = 28 -3-57 ·7. This, as you can see, is the "union" 
of the numbers' decompositions. 

For teachers. We ask you to think of the material of this section a.• j1L•t a sketch 
of a scenario for an actual session. As a teacher, you will want to create a more 
elaborate version. In some places you will probably give a series of very similar 
problems or exercises one after another, yet try to keep things varied. Encourage 
students to form their own conjectures regarding the problems and theorems you 
discuss. 

However, this topic will be learned best if, in further sessions, there are problems 
IL•ing the ideas explained above. 

We give here a list of some such problems. Methods and ideas introduced in 
this section will be used for the solution of problems in other sections of this chapter 
a.• well a.• in other chapters of the present book. 

Problem 1. Given two different prime numbers p and q, find the number of 
different divisors of the number a) pq; b) p2q; c) p2q2; d) p"qm. 

Problem 2. Prove that the product of any three consecutive natural numbers is 
divisible by 6. 

Hint. There is at lea.•t one even number, and at least one number divisible by 3, 
among any three consecutive numbers. 

Solution. Any number divisible by 2 and by 3 is divisible by 6, so the result follows 
directly from the hint. 

Problem 3. Prove that the product of any five consecutive natural numbers is a) 
divisible by 30; b) divisible by 120. 
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Problem 4. Given a prime number p, find the number of natural numbers which 
are a) less than p and relatively prime to it; b) less than p2 and relatively prime to 
it. 
Problem 5. Find the smallest natural number n such that n! is divisible by 990. 

Problem 6. How many zeros are there at the end of the decimal representation 
of the number 100! ? 
Problem 7. For some number n, can the number n! have exactly five zeros at the 
end of its decimal representation? 
Problem 8. Prove that if a number has an odd number of divisors, then it is a 
perfect square. 

Problem 9. Tom multiplied two two-digit numbers on the blackboard. Then he 
changed all the digits to letters (different digits were changed to different letters, 
and equal digits were changed to the same letter). He obtained AB· CD= EEFF. 
Prove that Tom made a mistake somewhere. 
Problem 10. Can a number written with one hundred O's, one hundred l's, and 
one hundred 2's be a perfect square? 

Hint. This number is divisible by 3, but not by 9. 
Solution. The sum of the digits of any number such as described in the problem is 
100(0 + 1+2) = 300, which is divisible by 3 but not by 9. This, then, must be true 
of the number in the problem, regardless of the order in which its digits appear. 

For teachers. You should draw the students' attention to the idea of the 
solution to the last problem. This could be done, for example, by asking what if 
the number described had two hundred O's, l's, and 2's? Three hundred O's, l's, 
and 2's? 

Problem 11: The numbers a and b satisfy the equation 56a = 65b. Prove that 
a + b is composite. 
Problem 12. Find all solutions in natural numbers of the equations a) x 2 -y2 = 31; 
b) x 2 - y2 = 303. 

Hint. x 2 - y2 = (x - y)(x + y). 

Problem 13. Find the integer roots of the equation x3 + x 2 + x - 3 = 0. 
Hint. Add 3 to both sides of the equation, then factor the left-hand side. 
Problem 14. Prove that any two natural numbers a and b satisfy the equation 
gcd{a, b) lcm(a, b) =ab. 

§2. Remainders 

Assume that you are in a country where coi11" of certain values are in circulation, 
and you want to buy a stick of gum for 3 cents from a vending machine. You have 
a 15-cent coin in your pocket but you do not have any 3-cent coins, which you need 
to buy the gum. Fortunately, you see a change machine which can give you any 
number of 3-cent coins. Obviously, you get five 3-cent coins for your 15-cent coin. 
What if you had a 20-cent coin? Then, of course, you get six 3-cent coins plus two 
cents change. So we have 20 = 6 · 3 + 2 (see Figure 15). This is a representation of 
the operation of division of 20 by 3 with a remainder. 

How does our change machine work? It gives out 3-cent coins until the remain­
der is less than 3. After that it gives you coins for this remainder, which is equal to 
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div 3 

~ 
~ 

FIGURE 15 

0, 1, or 2. It is cleax that the remainder is zero if and only if the original number 
(the value of the coin you put into the machine) is divisible by 3. 

Analogously, we can imagine a machine which gives m-cent coi11" and change 
which vaxies from 0 through m - 1 cents. This machine would represent the oper­
ation of division by m with a remainder. 

Now we give a more accurate definition: 
To divide a natural number N by the natural number m with a remainder 

means to represent N as N = km+ r, where O :5 r < m. We call the number r the 
remainder when the number N is divided by m. 

Now we can discuss the following problem: a person put twenty-two 50-cent 
coins and forty-four 10-cent coins into the changing machine. What is the change 
after he or she receives the 3-cent coins? 

This is easy. It suffices to find the remainder when the number x = 22·50+44· 10 
is divided by 3. What is remarkable is that we do not have to calculate the sum of 
all the products. Suppose we replace each of the numbers with its remainder when 
divided by 3. The number x will become 1 · 2 + 2 · 1. This is the number 4, which 
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has remainder 1 when divided by 3. We claim that the remainder of the original 
expression (that is, of the number x) is also 1. The reason is that the following 
statement is always true: 

Lemma On Remainders. The P'~':i'::ct of any two natural numbers has the same 
remainder, when divided by 3, as the P'~':i'::ct of their remainders. 

Methodological remark. A formal proof of this fact is not very difficult, 
though for beginners it may seem full of technicalities. 

For example, let us prove the second proposition. Let 

Then 

N1 = k1 · 3 + r1, 

N2 = k2 · 3 + r2 . 

N1N2 = (k1 · 3 + r1)(k2 · 3 + r2) 

= k1k2 · 32 + k1r2 · 3 + k2r1 · 3 + r1r2 

= 3(3k1k2 + k1r2 + k2r1) + r1r2. 

Thus, in changing N1N2 cents, the machine will give out 3k1k2 + k1r2 +k2r1 3-cent 
coins, and will still have r1r2 cents. Therefore, the remainder after putting N1N2 
cents into the machine is the same as the remainder for r1 r2 cents. 

In the Lemma On Remainders the number 3, of course, can be changed to any 
other natural number: the same proof carries through. 

For teachers. Generalizations of the Lemma On Remainders will be used 
throughout this section. Your students must learn how to apply these idea." when 
calculating remainders. We recommend solving a number of problems similar to 
Problem 15, drawing the students' attention to the use of these statements. 

We do not think that a discussion of the proof of the Lemma On Remainders 
is absolutely necessary in the sessions. 

Problem 15. Find the remainder which 
a) the number 1989 · 1990 · 1991 + 199Z3 gives when divided by 7; 
b) the number 9100 gives when divided by 8. 

The solution to the next problem includes one very important idea. 

Problem 16. Prove that the number n3 + Zn is divisible by 3 for any natural 
number n. 

Solution. The number n can give any of the following remainders when divided 
by 3: 0, 1, or Z. Thus we consider three cases. 

If n has remainder 0, then both n3 and Zn are divisible by 3, and therefore 
n3 + Zn is divisible by 3. 

If n has remainder 1, then n3 has remainder 1, Zn has remainder Z, and 1 + Z 
is divisible by 3. 

If n has remainder Z, then n 2 has remainder 1, n3 has remainder Z, Zn ha." 
remainder 1, and Z + 1 is divisible by 3. 

This ca.,e-by-ca."e analysi" completes the required proof. 
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For teachers. The key moment in the la."t solution wa." the idea of a ca.,e-by-case 
analysis, used to examine all the possible remainders modulo some natural number. 
This method deserves to be pointed out to the students. They should understand 
that such an analysis indeed gives us a complete and rigorous proof. 

Ca.'le-by-ca."e analysis can aL"o be used in many fields other than arithmetic. 
It would be excellent for students to learn to determine whether a case-by-ca."e 
analysis can help in solving a problem. We hope that the following problems will 
help achieve this objective. 

Problem 17. Prove that n5 + 4n is divisible by 5 for any integer n. 
Problem 18. Prove that n 2 + 1 is not divisible by 3 for any integer n. 

Problem 19. Prove that n 3 + 2 is not divisible by 9 for any integer n. 
Problem 20. Prove that n 3 - n is divisible by 24 for any odd n. 
Hint. Prove that the given number is a multiple of both 3 and 8. 

Problem 21. a) Prove that p2 - 1 is divisible by 24 if pis a prime number greater 
than 3. 

b) Prove that p2 - q2 is divisible by 24 if p and q are prime numbers greater 
than 3. 

Problem 22. The natural numbers x, y, and z satisfy the equation x2 + y2 = z2 . 

Prove that at least one of them is divisible by 3. 

Problem 23. Given natural numbers a and b such that a2 + b2 is divisible by 21, 
prove that the same sum of squares is also divisible by 441. 

Problem 24. Given natural numbers a, b, and c such that a+ b + c is divisible by 
6, prove that a3 + b3 + c3 is alw divisible by 6. 

Problem 25. Three prime numbers p, q, and r, all greater than 3, form an 
arithmetic progression: p = p, q = p + d, and r = p + 2d. Prove that d is divisible 
by 6. 

Problem 26. Prove that if we decrease by 7 the sum of the squares of any three 
natural numbers, then the result cannot be divisible by 8. 

Problem 27. The sum of the squares of three natural numbers is divisible by 9. 
Prove that we can choose two of these numbers such that their difference is divisible 
by 9. 

Hint. If two numbers have equal remainders when divided by 9, then their differ­
ence is divisible by 9. 

Let us continue with another set of problems: 

Problem 28. Find the last digit of the number 19891989 . 

Solution. To begin let us note that the last digit of the number 19891989 is the 
same a." the last digit of the number 91989 • We write down the last digits of the 
first few powers of 9: 9, 1, 9, 1, 9, .... 

To calculate the la."t digit of a power of 9 it is sufficient to multiply by 9 the 
la."t digit of the previous power of 9. Hence, it is quite clear that the digit 9 is 
always followed by the digit 1 (9 · 9 = 81), which in its turn is always followed by 
9 (1. 9 = 9). 
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Thus, the odd powers of 9 always have their last digit equal to 9. Therefore, 
the last digit of 19891989 is also 9. 

Problem 29. Find the la.•t digit of the number 250 • 

Solution. Let us write down the last digits of the first few powers of two: 2, 4, 8, 
6, 2, . . . . We can see that 25 ends with 2, a.• does 21 . Since the la.•t digit of any 
power is determined by the last digit of the previous power of 2, we have a cycle: 
26 ends with 4 (like 22), 27 ends with 8 (like 23), 28 ends with 6, 29 ends with 2, 
et cetera. Since the length of the cycle is 4, the last digit of the number 250 can be 
found using the remainder of the number 50 when divided by 4. This remainder is 
2, and the la.•t digit of 250 coincides with the la.•t digit of 22, which is 4. 

Problem 30. What is the la.•t digit of 777777? 

Problem 31. Find the remainder of 2100 when divided by 3. 

Hint. Write down the remainders when several powers of 2 are divided by 3. Prove 
that they form another cycle. 

Problem 32. Find the remainder when the number 31989 is divided by 7. 

Problem 33. Prove that 22225555 + 55552222 is divisible by 7. 

Hint. Show that the remainder when the given number is divided by 7 is zero. 

Problem 34. Find the la.•t digit of the number 77'. 

In Problems 16-27 we used the same id~a of a ca.•e-by-ca.•e analysis of the 
remainders modulo some natural number n. Moreover, this number n could be rec­
ognized rather ea.•ily from the statement of a problem. In the next set of problems 
guessing the number n will not be so ea.•y. The "art of guessing" requires certain 
skills and, while there are some standard tricks, can be quite difficult. 

For teachers. As exercises to maintain the skills mentioned we suggest the 
composition of multiplication tables for remainders when divided by "the most 
frequently used" numbers-2, 3, 4, 5, 6, 7, 8, 9, 11, 13, and so on. You can also try 
to find all possible remainders given by perfect squares and cubes when divided by 
these numbers. 

Problem 35. a) Given that p, p + 10, and p + 14 are prime numbers, find p. 
b) Given that p, 2p + 1, and 4p + 1 are prime numbers, find p. 

Hint. Find remainders when divided by 3. 

Problem 36. Given the pair of prime numbers p and 8p2 + 1, find p. 

Problem 37. Given the pair of prime numbers p and p2 + 2, prove that p3 + 2 is 
also a prime number. 

Problem 38. Prove that there are no natural numbers a and b such that a2 --3b2 = 
8. 

Problem 39. a) Can the sum of two perfect squares be another perfect square? 
b) Can the sum of three squares of odd natural numbers be a perfect square? 

Problem 40. Prove that the sum of the squares of five consecutive natural numbers 
cannot be a perfect square. 

Problem 41. If p, 4p2 + 1, and 6p2 + 1 are prime numbers, find p. 
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Methodological remark. Quite often, arithmetic problems about squares 
(like Problems 36-40) can be solved by using remainders modulo 3 or modulo 4. 
The point is that when divided by 3 or 4, perfect squares can give only remainders 
0 and 1. 

Problem 42. Prove that the number 100 ... 00500 ... 001 (100 zeros in each group) 
is not a perfect cube. 

Problem 43. Prove that a3 + b3 + 4 is not a perfect cube for any natural numbers 
a and b. 

Problem 44! Prove that the number 6n3 + 3 cannot be a perfect sixth power of 
an integer for any natural number n. 

Methodological remark. When dealing with problems about cubes of integers 
(like Problems 42-44) it is often useful to analyze the remainders modulo 7 or 
modulo 9. In either case there are only three possible remainders: {O, 1, 6} and 
{O, 1, 8} respectively. 

Problem 45! Given natural numbers x, y, and z such that x2 + y2 = z2 , prove 
that xy is divisible by 12. 

For teachers. The material explained in this section may be used to create 
at least two sessions. The first of them should be devoted to the calculation of 
remainders. The second can be spent in discussing the idea of case-by-case analysis 
in solutions of various problems. 

§3. A few more problems 

This section contains a series of divisibility problems which are not united by 
any common statement or method of solution. However, we will use ideas and 
methods from the previous sections. 

Problem 46. a) If it is known that a+ 1 is divisible by 3, prove that 4 + 7a is also 
divisible by 3. 

b) It is known that 2+a and 35-b are divisible by 11. Prove that a+b is also 
divisible by 11. 

Problem 47. Find the last digit of the number 12 + 22 + ... + 992 • 

Problem 48. Seven natural numbers are such that the sum of any six of them is 
divisible by 5. Prove that each of these numbers is divisible by 5. 

Problem 49. For any n > 1 prove that the sum of any n consecutive odd natural 
numbers is a composite number. 

Problem 50. Find the smallest natural number which has a remainder of 1 when 
divided by 2, a remainder of 2 when divided by 3, a remainder of 3 when divided 
by 4, a remainder of 4 when divided by 5, and a remainder of 5 when divided by 6. 

Problem 51. Prove that if (n- 1)! + 1 is divisible by n, then n is a prime number. 

We will discuss in more detail the following two problems: 

Problem 52! Prove that there exists a natural number n such that the numbers 
n + 1, n + 2, ... , n + 1989 are all composite. 
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Solution. We will try to explain how one can arrive at a solution. The number 
n + 1 must be composite. Let us try to keep things simple and make this number 
divisible by 2. Then the number n + 2 must be composite too, but it cannot be a 
multiple of 2. Let us try again to be simple and make this number divisible by 3. 
Proceeding as above we can try to find a number n such that n + 1 is divisible by 
2, n + 2 is divisible by 3, n + 3 is divisible by 4, et cetera. This is equivalent to 
saying that n - I is divisible by 2, 3, 4, ... , and 1990. Such a number is easy to 
find; for example, 1990! will do. Finally, we can take 1990! + I as the number we 
are looking for. 

Problem 53~ Prove that there are infinitely many prime numbers. 

Solution. Assume that there are only n prime numbers, and let us denote them all 
by Pi> P» ... , Pn· Then the number P1P2 .. ·Pn + 1 is divisible by none of the prime 
numbers Pi> P» ... , Pn· Therefore, this natural number cannot be represented as 
the product of primes, which is absurd. This contradiction completes the proof. 

For teachers. The problems of this section should not be given for solution at 
one session. They can be given in the course of an entire year of classes, or used 
for olympiads, various types of contests, et cetera. 

§4. Euclid's algorithm 

In the first section we discussed the concept of the Greatest Common Divisor 
of two natural numbers, and we showed how to calculate the G.C.D.: you must 
write down the decompositions of both numbers into the products of primes and 
then take their common part. 

For large numbers, however, this procedure is virtually impossible to carry 
out by hand (try to do this, for example, with the numbers 1381955 and 690713). 
Fortunately, there is another, less painful, way to calculate the G.C.D. It is called 
Euclid's algorithm. 

This method is based on the following simple reasoning: any common divisor 
of two numbers a and b (a > b) also divides the number a - b; also any common 
divisor of band a-b divides the number a as well. Hence, gcd(a, b) = gcd(b,a-b). 
In a sense, this explains all of Euclid's algorithm. 

We show how it works for the two numbers 451 and 287: 

gcd(451, 287) = gcd(287, 164) 

= gcd(164, 123) 

= gcd(l23, 41) 

= gcd(82,41) 

= gcd(41, 41) 

= 41. 

Note that Euclid's algorithm can be shortened as follows: change a not to a- b 
but to the remainder when a is divided by b. We can demonstrate this "improved" 
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algorithm using the pair of numbers mentioned at the beginning of this section: 

gcd(1381955, 690713) = gcd(690713, 529) 

= gcd(529, 368) 

= gcd(368, 161) 

= gcd(l61, 46) 

= gcd(46, 23) 

= gcd(23,0) 

= 23. 

As you can see, this method leads us to the result quite quickly. 

Problem 54. Find the G.C.D. of the numbers Zn+ 13 and n + 7. 

Solution. We have gcd(2n + 13, n + 7) = gcd(n + 7, n + 6) = gcd(n + 6, 1) = 1. 

Problem 55. Prove that the fraction ~~!~ cannot be reduced for any natural 
number n. 
Problem 56. Find gcd(21oo - 1, 2120 - 1). 

Problem 57. Find gcd(lll ... 111, 11 ... 11), where there are one hundred l's in 
the decimal representation of the first number and sixty l's in the decimal repre­
sentation of the second number. 

For teachers. However simple it may seem, Euclid's algorithm is a very im­
portant arithmetic fact (which can be used, for example, to prove the Fundamental 
Theorem of Arithmetic). Therefore, we think it would be wise to devote a separ 
rate session to this remarkable method (together with a discussion of the G.C.D., 
L.C.M., and their properties). For more details, see [53]. 



CHAPTER 4 

The Pigeon Hole Principle 

§ 1. Introduction 

Students who have never heard of the Pigeon Hole Principle may think that it 
is a joke: 

If we must put N + 1 or more pigeons into N pigeon holes, then some pigeon 
hole must contain two or more pigeons. 

Notice the vagueness of the proposition "some pigeon hole must contain . . . ", 
"two or more . . . ". This is, in fact, a distinguishing feature of the Pigeon Hole 
Principle, which sometimes allows us to draw quite unexpected conclusions, even 
when we don't seem to have enough information. (See Figure 16.) 

FIGURE 16 

The proof of this principle is quite simple, and uses only a trivial count of the 
pigeons in their pigeon holes. Suppose no more than one pigeon were in each hole. 
Then there would be no more than N pigeons altogether, which contradicts the 
assumption that we have N + 1 pigeons. This proves the Pigeon Hole Principle, 
using-and we must be aware of this-the method of proof by contradiction. 

But, you might ask, does the following problem concern pigeons? 

Problem 1. A bag contains beads of two colors: black and white. What is the 
smallest number of beads which must be drawn from the bag, without looking, so 
that among these beads there are two of the same color? 

The following problem also seems to have nothing to do with pigeons and pigeon 
holes: 
Problem 2. One million pine trees grow in a forest. It is known that no pine tree 
has more than 600000 pine needles on it. Show that two pine trees in the forest 
must have the same number of pine needles. 

Solution to Problem 1. We can draw three beads from the bag. If there were no 
more than one bead of each color among these, then there would be no more than 
two beads altogether. This is obvious, and contradicts the fact that we have chosen 
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three beads. On the other hand, it is clear that choosing two beads is not enough. 
Here the beads play the role of pigeons, and the colors (black and white) play the 
role of pigeon holes. 

Solution to Problem 2. We have one million "pigeons"-the pine trees-and, 
unfortunately, 600001 pigeon holes, numbered 0 through 600000. We put each 
"pigeon" (pine tree) in the pigeon hole numbered with the number of pine needles 
on the tree. Since there are many more "pigeons" than pigeon holes, there must be 
at least two "pigeons" (pine trees) in some pigeon hole: if there were no more than 
one in each pigeon hole, then there would be no more than 600001 "pigeons". But 
if two "pigeons" are in the same pigeon hole, that means that they have the same 
number of pine needles. 

Notice that the statements of these problems include the same vagueness as 
the Pigeon Hole Principle itself. It is exactly this kind of problem that can often 
be solved using the Pigeon Hole Principle. 

For teachers. Students have trouble dealing with this vagueness. They should 
first solve a few simple exercises, such as Problems 1 and 2. Sometimes they will 
not even remember what it is they must prove. It may be necessary to explain the 
difference between an intuitive understanding and an actual proof. 

In discussing these first few problems, it is important to emphasize the common 
ideas-these are typically not obvious to students-without consciously invoking 
any broad principle at all. This can be followed by a series of problems in conscious 
imitation of the arguments just given by the teacher (Problems 3-7). Finally, we 
can tell students directly about the Pigeon Hole Principle, and emphasize that it 
was actually the basis of solution for the previous problems. From that point on, 
in analyzing problems, we can give some of the solutions in detail, without even 
mentioning the words "Pigeon Hole Principle", in order to get students to re-think 
the situation. 

Problem 3. Given twelve integers, show that two of them can be chosen whose 
difference is divisible by 11. 

Problem 4. The city of Leningrad has five million inhabitants. Show that two of 
these must have the same number of hairs on their heads, if it is known that no 
person has more than one million hairs on his or her head. 

Problem 5. Twenty-five crates of apples are delivered to a store. The apples are 
of three different sorts, and all the apples in each crate are of the same sort. Show 
that among these crates there are at least nine containing the same sort of apple. 

§2. More general pigeons 

If you have read the problems above carefully, and tried to solve Problem 5 
in the same way as the first two, you may not have succeeded. The Pigeon Hole 
Principle, after all, will only tell you that there are two crates with the same sort of 
apples. In solving this problem, we can use the "General Pigeon Hole Principle": 

If we must put Nk + 1 or more pigeons into N pigeon holes, then some pigeon 
hole must contain at least k + 1 pigeons. 

In the case k = 1, the General Pigeon Hole Principle reduces to the simple 
Pigeon Hole Principle. We leave the proof of the General Principle as an exercise. 
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Solution to Problem 5. We are putting 25 "pigeons" (crates) into 3 "pigeon holes" 
(sorts of apples). Since 25=3·8+1, we can use the General Pigeon Hole Principle 
for N = 3, k = 8. We find that some "pigeon hole" must contain at least 9 crates. 

In analyzing this solution, it is instructive to restate it without any form of 
the Pigeon Hole Principle, using only a trivial counting argument (of the sort with 
which we proved the Pigeon Hole Principle). 

Most of the following problems will require use of the General Pigeon Hole 
Principle. 
Problem 6. In the country of Courland there are M football teams, each of which 
has 11 players. All the players are gathered at an airport for a trip to another 
country for an important game, but they are traveling on "standby". There are 10 
flights to their destination, and it turns out that each flight has room for exactly 
M players. One football player will take his own helicopter to the game, rather 
than traveling standby on a plane. Show that at least one whole team will be sure 
to get to the important game. 
Problem 7. Given 8 different natural numbers, none greater than 15, show that 
at least three pairs of them have the same positive difference (the pairs need not 
be disjoint as sets.) 

In solving Problem 7 we encounter a seemingly insuperable obstacle. There are 
14 possible differences between the 8 given numbers (the values of the differences 
being 1 through 14). These are the 14 pigeon holes. But what are our pigeons? 
They must be the differences between pairs of the given numbers. However, there 
are 28 pairs, and we can fit them in our 14 pigeon holes in such a way that there are 
exactly two "pigeons" in each hole (and therefore no hole containing three). Here 
we must use an additional consideration. We cannot put more than one pigeon in 
the pigeon hole numbered 14, since the number 14 can be written .as a difference of 
two natural numbers less than 15 in only one way: 14 = 15 - 1. This means that 
the remaining 13 pigeon holes contain at least 27 pigeons, and the General Pigeon 
Hole Principle gives us our result. 

The next four problems can be solved using the Pigeon Hole Principle (Ordinary 
or General) plus various other considerations. 
Problem 8. Show that in any group of five people, there are two who have an 
identical number of friends within the group. 
Problem 9. Several football teams enter a tournament in which each team plays 
every other team exactly once. Show that at any moment during the tournament 
there will be two teams which have played, up to that moment, an identical number 
of games. 
Problem lOa. What is the largest number of squares on an 8 x 8 checkerboard 
which can be colored green, so that in any arrangement of three squares (a "tro­
mino'') such as in Figure 17, at least one square is not colored green? (The tromino 
may appear as in the figure, or it may be rotated through some multiple of 90 
degrees.) 
Problem lOb. What is the smallest number of squares on an 8 x 8 checkerboard 
which can be colored green, so that in any tromino such as in Figure 17, at least 
one square is colored green? 
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FIGURE 17 

Hint for Problem lOa. Divide the checkerboard into sixteen 2 x 2 squares. These 
small squares are the pigeon holes, and the green squares will be the pigeons. 

In solving some of the more complex problems (starting for example with Prob­
lem 10), it is useful to make a clear separation between the processes of identifying 
pigeons and pigeon holes, of introducing auxiliary considerations, and of applying 
the Pigeon Hole Principle itself. An important goal is to develop the skill of rec­
ognizing, from the statement of a problem, when the Pigeon Hole Principle can be 
applied to its solution. 

Problem 11. Ten students solved a total of 35 problems in a math olympiad. 
Each problem was solved by exactly one student. There is at least one student who 
solved exactly one problem, at least one student who solved exactly two problems, 
and at least one student who solved exactly three problems. Prove that there is 
also at least one student who has solved at least five problems. 

§3. Pigeons in geometry 

Problem 12. What is the largest number of kings which can be placed on a 
chessboard so that no two of them put each other in check? 

Problem 13. What is the largest number of spiders which can amicably share the 
spider web pictured below? A spider will tolerate a neighbor only at a distance of 
1.1 meter or more, traveling along the web. 

1 meter 
< > 

FIGURE 18 

1/2 meter 
~ 
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Problem 14. Show that an equilateral triangle cannot be covered completely by 
two smaller equilateral triangles. 

Problem 15. Fifty-one points are scattered inside a square with a side of 1 meter. 
Prove that some set of three of these points can be covered by a square with side 
20 centimeters. 

Solution. If we divide the square into 25 smaller squares with sides of 20 cen­
timeters, the General Pigeon Hole Principle assures us that one of these squares 
includes at least three of the 51 scattered points. 

The careful reader will see a small flaw in this argument. Throughout our 
discussion, we have been assuming that our pigeon holes are disjoint. That is, no 
pigeon can belong in two different pigeon holes at the same time. However, the 
square "pigeon holes" in this solution have a slight overlap: points on the sides of 
the squares may belong to both pigeon holes. 

To fix this, we must make a choice for each line segment which bounds a 
square, by deciding which of its two neighboring squares includes the points on 
the line segment. We can do this, for instance, by making the "north" and "east" 
borders of each square exclude their points, and the "south" and "west" border 
include their points (except for points on the border of the original square). With 
this slight adjustment, we have a set of "true pigeon holes", and the proof follows 
as before. 

§4. Another generalization 

Notice now that the proofof the Pigeon Hole Principle is based on the addition 
of inequalities. An important result of the process of adding inequalities, which can 
often be combined with the theme of the Pigeon Hole Principle, can be stated as 
follows: 

If the sum of n or more numbers is equal to S, then among these there must 
be one or more numbers not greater than S /n, and also one or more numbers not 
less than S /n. 

As with most variants of the Pigeon Hole Principle, we can prove this indirectly. 
, If, for example, all the numbers are greater than S / n, then their sum would be 

bigger than S, which contradicts our assumption. 

Problem 16. Five young workers received as wages 1500 rubles altogether. Each 
of them wants to buy a cassette player costing 320 rubles. Prove that at least one 
of them must wait for the next paycheck to make his purchase. 

Solution. The sum S of their earnings is 1500 rubles, so the above principle 
guarantees that at least one worker earned no more that 1500/5 = 300 rubles. 
Such a worker must wait for his cassette player. 

Problem 17. In a brigade of 7 people, the sum of the ages of the members is 332 
years. Prove that three members can be chosen so that the sum of their ages is no 
less than 142 years. 

Solution. We look at all possible triples of brigade members. If we add the three 
ages in each group, then sum these numbers, this final sum must be 15 · 332 (since 
each person appears in a triple 15 times). Yet there are altogether 35 triples. This 
means that there is a triple of brigade members such that the sum of their ages is 
not less than 15 · 332/35, which is greater than 142. 



36 MATHEMATICAL CIRCLES (RUSSIAN EXPERIENCE) 

Problem 18. On a certain planet in the solar system Tau Cetus, more than 
half the surface of the planet is dry land. Show that the Tau Cetans can dig a 
tunnel straight through the center of their planet, beginning and ending on dry 
land (assume that their technology is sufficiently developed). 

§5. Number theory 

Many wonderful problems touching on divisibility properties of integers can be 
solved using the Pigeon Hole Principle. 

Problem 19. Prove that there exist two powers of two which differ by a multiple 
of 1987. 

Problem 20. Prove that of any 52 integers, two can always be found such that 
the difference of their squares is divisible by 100. 

Problem 21. Prove that there exists an integer whose decimal representation 
consists entirely of l's, and which is divisible by 1987. 

Solution to Problem 21. We look at the 1988 "pigeons" numbered 1, 11, 111, ... , 
111 ... 11 (1988 1 's), and sort them into 1987 pigeon holes numbered 0, 1, 2, ... , 
1986. Each number is put into the pigeon hole bearing the number equal to its 
remainder when divided by 1987. The Pigeon Hole Principle now assures us that 
there are two numbers which have the same remainder when divided by 1987. Let 
these numbers have m l's and n l's respectively, with m > n. Then their difference, 
which is divisible by 1987, is equal to 111 ... 1100 ... 00 (m - n l's and n zeros). 
We can cross out all the trailing zeros-these do not affect divisibility by 1987 since 
neither 2 nor 5 is a factor of 1987-to obtain a number written entirely with l's, 
and which is divisible by 1987. 

Problem 22. Prove that there exists a power of three which ends with the digits 
001 (in decimal notation). 

Problem 23. Each box in a 3 x 3 arrangement of boxes is filled with one of 
the numbers -1, 0, 1. Prove that of the eight possible sums along the rows, the 
columns, and the diagonals, two sums must be equal. 

Problem 24. Of 100 people seated at a round table, more than half are men. 
Prove that there are two men who are seated diametrically opposite each other. 

Problem 25. Fifteen boys gathered 100 nuts. Prove that some pair of boys 
gathered an identical number of nuts. 

Problem 26. The digits 1, 2, ... , 9 are divided into three groups. Prove that the 
product of the numbers in one of the groups must exceed 71. 

Problem 27. Integers are placed in each entry of a 10 x 10 table, with no two 
neighboring integers differing by more than 5 (two integers are considered neighbors 
if their squares share a common edge). Prove that two of the integers must be equal. 

Problem 28. Prove that among any six people there are either three people, each 
of whom knows the other two, or three people, each of whom does not know the 
other two. 

Problem 29. Five lattice points are chosen on an infinite square lattice. Prove 
that the midpoint of one of the segments joining two of these points is also a lattice 
point. 
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Problem 30. A warehouse contains 200 boots of size 41, 200 boots of size 42, and 
200 boots of size 43. Of these 600 boots, there are 300 left boots and 300 right 
boots. Prove that one can find among these boots at least 100 usable pairs. 

Problem 31. The alphabet of a certain language contains 22 consonants and 11 
vowels. Any string of these letters is a word in this language, so long as no two 
consonants are together and no letter is used twice. The alphabet is divided into 6 
(non-empty) subsets. Prove that the letters in at least one of these groups form a 
word in the language. 

Problem 32. Prove that we can choose a subset of a set of ten given integers, such 
that their sum is divisible by 10. 

Problem 33. Given 11 different natural numbers, none greater than 20. Prove 
that two of these can be chosen, one of which divides the other. 

Problem 34. Eleven students have formed five study groups in a summer camp. 
Prove that two students can be found, say A and B, such that every study group 
which includes student A also includes student B. 

Students should remember that even if they cannot cope with some problem 
right away, it always pays to go back later and try some fresh ideas. Do not jump 
to the solutions chapter! And do not forget that some of the problems may have 
alternate solutions not using the Pigeon Hole Principle. 





CHAPTER 5 

Graphs-1 

The mathematical objects discussed in this chapter are extremely useful in 
solving many kinds of problems, which often bear no outward resemblance to each 
other. Graphs are also interesting in and of themselves. A separate subdivision 
of mathematics, called graph theory, is devoted to their study. We will examine 
several elementary ideas from this theory to show how graphs are used in solving 
problems. 

§1. The concept of a graph 

Problem 1. Cosmic liaisons are established among the nine planets of the solar 
system. Rockets travel along the following routes: Earth-Mercury, Pluto-Venus, 
Earth-Pluto, Pluto-Mercury, Mercury-Venus, Uranus-Neptune, Neptune-Saturn, 
Saturn-Jupiter, Jupiter-Mars, and Mars-Uranus. Can a traveler get from Earth 
to Mars? 

Solution. We can draw a diagram, in which the planets will be represented by 
points, and the routes connecting them by non-intersecting line segments (see Figure 
19). It is now clear that it is impossible to travel from Earth to Mars. 

E Me 

[ZJ 
p v Ma J 

FIGURE 19 

Problem 2. Several knights are situated on a 3 x 3 chessboard as shown in Figure 
20. Can they move, using the usual chess knight's move, to the position shown in 
Figure 21? 

Solution. The answer is no. We can show this by numbering the squares of the 
chessboard with the numbers 1, 2, 3, ... , 9 as shown in Figure 22. Then we can 
represent each square by a point. If we can get from one square to another with a 
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FIGURE 22 

knight's move, we connect the corresponding points with a line (Figure 23). The 
starting and ending positions of the knights are shown in Figure 24. 

The order in which the knights appear on the circle clearly cannot be changed. 
Therefore it is not possible to move the knights to the required positions. 

The solution of these two problems, which do not resemble each other on the 
surface, have a central idea in common: the representation of the problem by a 
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diagram. The resulting diagrams also have something in common. Each consists of 
a set of points, some of which are connected by line segments. 

Such a diagram is called a graph. The points are called the vertices of 
the graph, and the lines are called its edges. 

Methodological remark. The definition we give of a graph is actually too 
limiting. For example, in Problem 20 below it is rather natural to draw the edges 
of a graph using arcs, rather than line segments. However, an accurate definition 
would here be too complicated. The description above will suffice for students to 
get an intuitive idea of what a graph is, which they can later refine. 

Here are two more problems which can be solved by drawing graphs. 

Problem 3. A chessboard has the form of a cross, obtained from a 4 x 4 chessboard 
by deleting the corner squares (see Figure 25). Can a knight travel around this 
board, pass through each square exactly once, and end on the same square he 
starts on? 
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FIGURE 25 

Problem 4. In the country of Figura there are nine cities, with the names 1, 2, 3, 
4, 5, 6, 7, 8, 9. A traveler finds that two cities are connected by an airplane route 
if and only if the two-digit number formed by naming one city, then the other, is 
divisible by 3. Can the traveler get from City 1 to City 9? 

Note that one and the same graph can be represented in different ways. For 
example, the graph of Problem 1 can be represented as in Figure 26. 
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FIGURE 26 

The only important thing about a graph is which vertices are con-
nected and which are not. ' 

Two graphs which are actually identical, but are perhaps drawn dif­
ferently, are called isomorphic. 

Problem 5. Try to find, in Figures 27, 28, and 29 a graph isomorphic to the graph 
of Problem 2 (see Figure 23). 

Solution. The first and the third graphs are isomorphic to each other, and it is not 
hard to convince oneself that both of these are isomorphic to the graph of Problem 
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FIGURE 27 

FIGURE 28 

FIGURE 29 

2. It suffices to renumber their vertices (see Figures 30 and 31). A proof that the 
graphs of Figures 28 and 23 are not isomorphic is somewhat more complicated. 

For teachers. The concept of a graph should be introduced only after several 
problems like Problems 1 and 2 above, which involve using a graph to represent the 
situation of the problem. It is important that students realize right away that the 
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same graph can be drawn in different ways. To illustrate the idea of isomorphism, 
students can solve several more exercises of the type given here. 

§2. The degree of a vertex: counting the edges 

In the preceding section we defined a graph as a set of points (vertices), some of 
which are connected by lines (edges). The number of edges which start at a given 
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vertex is called the degree of the vertex. Thus, for example, in the graph of Figure 
32, vertex A has degree 3, vertex B has degree 2, and vertex C has degree l. 

Problem 6. In Smallville there are 15 telephones. Can they be connected by wires 
so that each telephone is connected with exactly five others? 

Solution. Suppose that this is possible. Consider the graph in which the vertices 
represent telephones, and the edges represent the wires. There are 15 vertices in 
this graph, and each has degree 5. Let us count the number of edges in this graph. 
To do this, we can add up the degrees of all the vertices. However, in this sum, 
each edge is counted twice (each edge connects two vertices). Therefore the number 
of edges in the graph must be equal to 15 · 5/2. But this number is not an integer. 
It follows that such a graph cannot exist, which means that we cannot connect the 
telephones as required. 

In solving this problem, we have shown how to count the edges of a 
graph, knowing the degree of each vertex: we add the degrees of all the 
vertices and divide this sum by 2. 

Problem 7. In a certain kingdom, there are 100 cities, and four roads lead out of 
each city. How many roads are there altogether in the kingdom? 

Notice that our counting method for edges of a graph has the following conse-
' quence: the sum of the degrees of all the vertices in a graph must be even (other­

wise, we could not divide it by 2 to get the number of edges). We can give a better 
formulation of this result using the following definitions: 

A vertex of a graph having an odd degree is called an odd vertex. A 
vertex having an even degree is called an even vertex. 

Theorem. The number of odd vertices in any graph must be even. 

To prove this theorem it is enough to notice that the sum of several integers is 
even if and only if the number of odd addends is even. 

Methodological remark. This theorem plays a central role in this chapter. 
It is important to keep returning to its proof, and to apply the theorem as often 
as possible in the solution of problems. Students should be encouraged to repeat 
the proof of the theorem within their solution to a problem, rather than merely 
quoting the theorem. 

The theorem is often used to prove the existence of a certain edge of a graph, as 
in Problem 12. It is also used, as in Problems 8-11, to prove that a graph answering 
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a certain description is impossible to draw. Such problems can be difficult for 
students to grapple with. It is essential that they first try to draw the required 
graph, then guess that it is not possible, and finally give a clear discussion or proof, 
using the theorem above, that the required graph does not exist. 

Problem 8. There are 30 students in a class. Can it happen that 9 of them have 3 
friends each (in the class), eleven have 4 friends each, and ten have 5 friends each? 

Solution. If this were possible, then it would also be possible to draw a graph with 
30 vertices (representing the students), of which 9 have degree 3, 11 have degree 
4, and 10 have degree 5 (by connecting "friendly" vertices with edges). However, 
such a graph would have 19 odd vertices, which contradicts the theorem. 

Problem 9. In Smallville there are 15 telephones. Can these be connected so that 
(a) each telephone is connected with exactly 7 others; 
(b) there are 4 telephones, each connected to 3 others, 8 telephones, each 

connected to 6 others, and 3 telephones, each connected to 5 others? 

Problem 10. A king has 19 vassals. Can it happen that each vassal has either 1, 
5, or 9 neighbors? 

Problem 11. Can a kingdom in which 3 roads lead out of each city have exactly 
100 roads? 

Problem 12. John, coming home from Disneyland, said that he saw there an 
enchanted lake with 7 islands, to each of which there led either 1, 3, or 5 bridges. 
Is it true that at least one of these bridges must lead to the shore of the lake? 

Problem 13. Prove that the number of people who have ever lived on earth, and 
who have shaken hands an odd number of times in their lives, is even. 

Problem 14. Can 9 line segments be drawn in the plane, each of which intersects 
exactly 3 others? 

§3. Some new definitions 

Problem 15. In the country of Seven there are 15 towns, each of which is connected 
to at least 7 others. Prove that one can travel from any town to any other town, 
possibly passing through some towns in between. 

Solution. Let us look at any 2 towns, and suppose that there is no path connecting 
them. This means that there is no sequence of roads such that the end of one road 
coincides with the beginning of the next road, connecting the 2 towns. It is given 
that each of the 2 towns is connected with at least 7 others. These 14 towns must 
be distinct: if any 2 were to coincide, there would be a path through them (or it) 
connecting the 2 given towns (see Figure 33). So there are at least 16 different 
towns, which contradicts the statement of the problem. 

* 
In light of this problem, we give two important definitions: 
A graph is called connected if any two of its vertices can be connected 

by a path (a sequence of edges, each of which begins at the endpoint of 
the previous one). 

A closed path (a path whose starting and ending vertices coincide) 
is called a cycle. 
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FIGURE 33 

We can now reformulate the result of the previous problem: the graph of the 
roads of the kingdom of Seven is connected. 

Problem 16. Prove that a graph with n vertices, each of which has degree at least 
(n - 1)/2, is connected. 

It is natural to ask how a non-connected graph looks. Such a graph is composed 
of several "pieces", within each of which one can travel along the edges from any 
vertex to any other. Thus, for example, the graph of Figure 34 consists of three 
"pieces", while the graph of Figure 35 consists of two. 

FIGURE 34 

FIGURE 35 

These "pieces" are called connected components of the graph. Each connected 
component is, of course, a connected graph. We note also that a connected graph 
consists of a single connected component. 
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Problem 17. In Never-Never-Land there is only one means of transportation: 
magic carpet. Twenty-one carpet lines serve the capital. A single line flies to 
Farville, and every other city is served by exactly 20 carpet lines. Show that 
it is possible to travel by magic carpet from the capital to Farville (perhaps by 
transferring from one carpet line to another). 

Solution. Let us look at that connected component of the graph of carpet lines 
which includes the capital. We must prove that this component includes Farville. 
Suppose it does not. Then there are 21 edges starting at one vertex, and 20 edges 
starting at every other vertex. Therefore this connected component contains exactly 
one odd vertex. This is a contradiction. 

Methodological remark. The notion of connectedness is extremely important, 
and is used constantly in further work in graph theory. The important point in the 
solution of Problem 16----consideration of a connected component-is a meaningful 
idea, and often turns out to be useful in solving problems. 

Problem 18. In a certain country, 100 roads lead out of each city, and one can 
travel along those roads from any city to any other. One road is closed for repairs. 
Prove that one can still get from any city to any other. 

§4. Eulerian graphs 

Problem 19. Can one draw the graph pictured in (a) Figure 36; (b) Figure 37, 
without lifting the pencil from the paper, and tracing over each edge exactly once? 

FIGURE 36 

FIGURE 37 
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Solution. (a) Yes. One way is to start at the vertex on the extreme left, and end 
at the central vertex. 

(b) No. Indeed, if we can trace out the graph as required in the problem, we 
will arrive at every vertex as many times as we leave it (with the exception of the 
initial and terminal vertices). Therefore the degree of each vertex, except for two, 
must be even. For the graph in Figure 37 this is not the case. 

In solving Problem 19, we have established the following general principle: 
A graph that can be traversed without lifting the pencil from the 

paper, while tracing each edge exactly once, can have no more than two 
odd vertices. 

This sort of graph was first studied by the great mathematician Leonhard Euler 
in 1736, in connection with a famous problem about the Konigsburg bridges (see 
also Problem 12). Graphs which can be traversed like this are called Eulerian 
graphs. 

Problem 20. A map of the city of Konigsburg is given in Figure 38. The city lies 
on both banks of a river, and there are two islands in the river. There are seven 
bridges connecting the various parts of the city. Can one stroll around the town, 
crossing each bridge exactly once? 

FIGURE 38 

Problem 21. A group of islands are connected by bridges in such a way that 
one can walk from any island to any other. A tourist walked around every island, 
crossing each bridge exactly once. He visited the island of Thrice three times. How 
many bridges are there to Thrice, if 

(a) the tourist neither started nor ended on Thrice; 
(b) the tourist started on Thrice, but didn't end there; 
(c) the tourist started and ended on Thrice? 

Problem 22. (a) A piece of wire is 120 cm long. Can one use it to form the edges 
of a cube, each of whose edges is 10 cm? 

(b) What is the smallest number of cuts one must make in the wire, so as to 
be able to form the required cube? 





CHAPTER 6 

The Triangle Inequality 

§1. Introduction 

The triangle inequality is easily motivated, whether or not students have had 
a formal introduction to geometry. But even for those students who have studied 
axiomatics or formal proof, there are non-trivial applications lying right beneath 
the surface, and problems involving the triangle inequality can be constructed which 
demand significant thought. 

The inequality itself states that for any triangle ABC we have three inequalities 

showing that any side of the triangle is less than the sum of two others. 

Problem 1. Prove that for any three points A, B, and C we have AC 2': IAB-BCI. 

In discussing this problem, it is important to give its geometric interpretation: 
the length of a side of a triangle is not less than the absolute value of the difference 
between the other two sides. 

Problem 2. Side AC of triangle ABC has length 3.8, and side AB has length 0.6. 
If the length of side BC is an integer, what is this length? 

Problem 3. Prove that the length of any side of a triangle is not more than half 
its perimeter. 

Problem 4. The distance from Leningrad to Moscow is 660 kilometers. From 
, Leningrad to the town of Likovo it is 310 kilometers, from Likovo to Klin it is 200 

kilometers, and from Klin to Moscow is 150 kilometers. How far is it from Likovo 
to Moscow? 

Hint for solution to Problem 4: Notice that the sum of the distances from Leningrad 
to Likovo, from Likovo to Klin, and from Klin to Moscow is equal to the distance 
from Leningrad to Moscow. This means that these towns are all on the same line. 

Note that in solving Problem 4, we use the fact that the sum of any three sides 
of a quadrilateral is greater than the fourth side. This can easily be established, 
using the triangle inequality. In fact, for any polygon, the sum of all but one of 
the sides is greater than the remaining side. For many students, this fact can 
be established for a few cases, and then assumed intuitively for all cases. More 
advanced students can give a formal proof, using induction. 

Problem 5. Find a point inside a convex quadrilateral such that the sum of the 
distances from the point to the vertices is minimal. 

Solution. Since the quadrilateral is convex, its diagonals intersect at some interior 
point 0. Suppose the vertices of the quadrilateral are A, B, C, and D (see Figure 
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39). Then the sum of the distances from 0 to the vertices is equal to AC+BD. But 
for any other point P, PA+ PC> AC (by the triangle inequality). Analogously, 
PB + PD 2: B D. This means that the sum of the distances from P to the vertices 
is not less than AC+ BD. Clearly, this sum is equal to AC+ BD only if P and 0 
coincide. Therefore 0 is the point we are looking for. 

c 

FIGURE 39 

Problem 6. Point 0 is given on the plane of square ABCD. Prove that the 
distance from 0 to one of the vertices of the square is not greater than the sum of 
the distances from 0 to the other three vertices. 

Problem 7. Prove that the sum of the diagonals of a convex quadrilateral is less 
than the perimeter but more than half the perimeter. 

Problem 8. Prove that the sum of the diagonals of a convex pentagon is greater 
than the perimeter but less than double the perimeter. 

Problem 9. Prove that the distance between any two points inside a triangle is 
not greater than half the perimeter of the triangle. 

§2. The triangle inequality and geometric transformations 

Often, the triangle to which we must apply the triangle inequality does not 
appear in the diagram for the problem. In these cases, a suitable choice of geometric 
transformation can help. The following series of problems illustrates the use of 
symmetry together with the triangle inequality. 

Problem 10. A mushroom-gatherer leaves the woods at a given point. He must 
reach a highway, which follows a straight line, and go back into the woods at 
another given point (Figure 40). How should he do this, following the shortest 
path possible? 

FIGURE 40 
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Problem 11. A woodsman's hut is in the interior of a peninsula which has the 
form of an acute angle. The woodsman must leave his hut, walk to one shore of 
the peninsula, then to the other shore, then return home. How should he choose 
the shortest such path? 
Problem 12. Point A, inside an acute angle, is reflected in either side of the angle 
to obtain points B and C. Line segment BC intersects the sides of the angle at D 
and E (see Figure 41). Show that BC/2 >DE. 

c 

FIGURE 41 

Problem 13. Point C lies inside a given right angle, and points A and B lie on 
its sides (see Figure 42). Prove that the perimeter of triangle ABC is not less than 
twice the distance OC, where 0 is the vertex of the given right angle. 

·k1 0 B 

FIGURE 42 

Let us analyze the solution to Problem 10. Suppose the mushroom-gatherer 
leaves the woods at point A, and must re-enter at point B. Reflect point A in the 
line of the highway (see Figure 43) to obtain point A'. If K is the point at which 
the mushroom-gatherer reaches the highway, then route AK B is equal in length 
to route A' KB, since we are simply reflecting segment AK in the highway. But 
A' KB cannot be shorter than A' B. It follows that point K should be the point 
where A' B intersects the highway. 

Similar considerations allow us to solve the other problems in this series. Fbr 
example, in Problem 13 we can reflect point C in lines OA and OB, to obtain 
points C' and C" (Figure 44); it is easy to see that point 0 lies on straight line 
C'C". Then we can replace the perimeter of triangle ABC with the sum of the 
lengths of segments C' A, AB, and BC". The triangle inequality tells us that this 
sum is no less than the length of C'C". This, in turn, is equal to 20C, since it is 
the hypotenuse of a right triangle of which OC is the median. (Students who don't 
know this theorem can find a more intuitive way to explain this: for example, by 
completing a rectangle with vertices at C', C", and C.) 



54 MATHEMATICAL CIRCLES (RUSSIAN EXPERIENCE) 

-~· _L 
K I 

I 

A' 

FIGURE 43 

C' 

C" 

FIGURE 44 

For teachers. It is important to solve these problems carefully, getting students 
to give a logical exposition of the solution, and not just an intuitive explanation. 
First we can remind the students that line reflection does not change distances. 
Then we can. point out the common idea in these problems: to transform the 
required path so that its length does not change, and so that the problem becomes 
one of connecting two points with the shortest path possible. It is important to 
check that one of the transformed paths can really be a straight line so that we 
have an obvious answer; otherwise the solution can be much more difficult. 

In many problems, the action takes place on some sort of surface in space. 
In such problems, the triangle inequality can be used only after we "unfold" the 
surface onto a plane. The following problems are typical: 

Problem 14. A fly sits on one vertex of a wooden cube. What is the shortest path 
it can follow to the opposite vertex? 

Problem 15. A fly sits on the outside surface of a cylindrical drinking glass. It 
must crawl to another point, situated on the inside surface of the glass. Find the 
shortest path possible (neglecting the thickness of the glass). 



6. THE TRJANGLE INEQUALITY 55 

§3. Additional constructions 

In many cases, the proofs of geometric inequalities require additional construc­
tions. Such problems are often complicated, since the choice of construction requires 
a certain amount of practice. The following series of problems provides some such 
practice: 

Problem 16. If point 0 is inside triangle ABC, prove that AO+OC < AB+BC. 

Problem 17. Prove that the sum of the distances from point 0 to the vertices of 
a given triangle is less than the perimeter, if point 0 lies inside the triangle. What 
if point 0 is outside the triangle? 

Problem 18. Solve Problem 11, if the peninsula has the shape of an obtuse angle. 

Problem 19. Prove that the length of median AM in triangle ABC is not greater 
than half the sum of sides AB and AC. Prove also that the sum of the lengths of 
the three medians is not greater than the triangle's perimeter. 

§4. Miscellaneous problems 

Problem 20. A polygon is cut out of paper, and then folded in two along a straight 
line (see Figure 45). Prove that the perimeter of the polygon formed is not greater 
than the perimeter of the original polygon. 
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FIGURE 45 

Problem 21. Prove that a convex polygon cannot have three sides, each of which 
is greater than the longest diagonal. 

Problem 22. Prove that the perimeter of a triangle is not greater than 4/3 the 
sum of its medians. (For the solution of this problem, one must know the ratio into 
which the three medians of a triangle divide each other.) 
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Problem 23. Two villages lie on opposite sides of a river whose banks are parallel 
lines. A bridge is to be built over the river, perpendicular to the banks. Where 
should the bridge be built so that the path from one village to the other is as short 
as possible? 

Problem 24. Prove that a convex pentagon (that is, a pentagon whose diagonals 
all lie inside the figure) has three diagonals which can form a triangle. 



CHAPTER 7 

Games 

Students enjoy playing games. Whether the mathematics behind the game is 
simple or complicated, the chance for social interaction and for controlled compe­
tition will help to break up any routine patterns in school life. 

At the same time, these problems hold a lot of content, and students frequently 
find their solution quite difficult. The chief difficulties consist first in articulating 
the winning strategy, and second in proving that the strategy considered always 
leads to a win. In surmounting these difficulties, students will learn more about 
accepted standards of mathematical argument, and will refine their understanding 
of what it means to solve a problem. 

Students must understand that statements of the form: "If you do thus, I will 
do as follows," are usually not solutions to a game. Examples of correct solutions 
are given in the text. 

We recommend giving no more than one or two games from this chapter in each 
lesson, with the exception of §4, which contains problems analyzed "backwards". 
The idea of symmetry (§2) and the concept of a winning position (§3) can be treated 
independently. This is best done after considering two or three problems on each 
theme. 

There are many types of games considered in mathematics, and many types of 
game theories. This chapter considers only one type. In each of these games, there 
are two players who take turns making moves, and a player cannot decline to move. 
The problem is always the same: to find out which player (the first or the second) 
has a winning strategy. These notes will not be repeated for each game. 

Starred problems are more difficult than the others. 

§1. Pseudo-games: Games that are jokes 

The first class of games we examine are games that turn out to be jokes. The 
outcomes of these pseudo-games do not depend on how the play proceeds. For this 
reason, the solution of such a pseudo-game does not consist of a winning strategy, 
but of a proof that one or the other of the two players will always win (regardless 
of how the play proceeds!). 
Problem 1. Two children take turns breaking up a rectangular chocolate bar 6 
squares wide by 8 squares long. They may break the bar only along the divisions 
between the squares. If the bar breaks into several pieces, they keep breaking the 
pieces up until only the individual squares remain. The player who cannot make a 
break loses the game. Who will win? 
Solution. After each move, the number of pieces increases by one. At first, there 
is only one piece. At the end of the game, when no more moves are possible, the 
chocolate is divided into small squares, and there are 48 of these. So there must 
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have been 47 moves, of which the last, as well as every other odd-numbered move, 
was made by the first player. Therefore, the first player will win, no matter how 
the play proceeds. 

For teachers. Pseudo-games allow the students to relax and be relieved of the 
tension of having to solve a problem or win a game. They are very effective, for 
instance, if introduced right after particularly difficult material, or at the end of a 
lesson. It is important to let the students actually play the games before giving a 
solution. 

Problem 2. There are three piles of stones: one with 10 stones, one with 15 
stones, and one with 20 stones. At each turn, a player can choose one of the piles 
and divide it into two smaller piles. The loser is the player who cannot do this. 
Who will win, and how? 

Problem 3. The numbers 1 through 20 are written in a row. Two players take 
turns putting plus signs and minus signs between the numbers. When all such 
signs have been placed, the resulting expression is evaluated (i.e., the additions 
and subtractions are performed). The first player wins if the sum is even, and the 
second wins if the sum is odd. Who will win and how? 

Problem 4. Two players take turns placing rooks (castles) on a chessboard so 
that they cannot capture each other. The loser is the player who cannot place a 
castle. Who will win? 

Problem 5. Ten 1 's and ten 2's are written on a blackboard. In one turn, a player 
may erase any two figures. If the two figures erased are identical, they are replaced 
with a 2. If they are different, they are replaced with a 1. The first player wins if 
a 1 is left at the end, and the second player wins if a 2 is left. 

Problem 6! The numbers 25 and 36 are written on a blackboard. At each turn, 
a player writes on the blackboard the (positive) difference between two numbers 
already on the blackboard-if this number does not already appear on the black­
board. The loser is the player who cannot write a number. 

Problem 7. Given a checkerboard with dimensions (a) 9 x 10; (b} 10 x 12; (c) 
9 x 11. In one turn, a player is allowed to cross out one row or one column if at the 
beginning of the turn there is at least one square of the row or column remaining. 
The player who cannot make a move loses. 

§2. Symmetry 

Problem 8. Two players take turns putting pennies on a round table, without 
piling one penny on top of another. The player who cannot place a penny loses. 

Solution. In this game, the first player can win, no matter how big the table may 
be! To do so, he must place the first penny so that its center coincides with the 
center of the table. After this, he replies to each move of the second player by 
placing a penny in a position symmetric to the penny placed by the second player, 
with respect to the center of the table. Notice that in such a strategy the positions 
of the two players are symmetric after each move of the first player. It follows that 
if there is a possible turn for the second player, then there is a possible response 
for the first player, who will therefore win. 
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Problem 9. Two players take turns placing bishops on the squares of a chessboard, 
so that they cannot capture each other (the bishops may be placed on squares of 
any color). The player who cannot move loses. 

Solution. Since a chessboard is symmetric with respect to its center, it is natural 
to try a symmetric strategy. But this time, since one cannot place a bishop at the 
center of the chessboard, the symmetry will help the second player. It might seem, 
from an analogy with the previous problem, that such a strategy would allow the 
second player to win. However, if he follows it, he cannot even make a second move! 
The bishop placed by the first player can take a bishop placed in the symmetric 
square. 

This example shows that in employing a symmetric strategy one must take into 
account that a symmetric move can be blocked or prevented, but only by 
a move the opponent has just made. Because of the symmetry, moves made 
earlier cannot affect a player's move. To solve a game using a symmetric strategy, 
one must find a symmetry such that the previous move does not destroy the chosen 
strategy. 

Therefore, to solve Problem 9 we must look not to the point symmetry of the 
chessboard, but to its line symmetry. We can choose, for example, the line between 
the fourth and fifth rows as the line of symmetry. Squares which are symmetric 
with respect to this line will be of different colors, and therefore a bishop on one 
square cannot take a bishop on the symmetric square. Therefore, the second player 
can win this game. 

The idea of a symmetric strategy need not be purely geometric. Consider the 
following problem. 

Problem 10. There are two piles of 7 stones each. At each turn, a player may 
take as many stones as he chooses, but only from one of the piles. The loser is the 
player who cannot move. 

Solution. The second player can win this game, using a symmetric strategy. At 
each turn, he must take as many stones as the first player has just taken, but from 
the other pile. Therefore the second player always has a move. 

' The symmetry in this problem consists in maintaining the equality of the num-
ber of stones in each pile. 

Problem 11. Two players take turns placing knights on the squares of a chess­
board, so that no knight can take another. The player who is unable to do this 
loses. 

Problem 12. Two players take turns placing kings on the squares of a 9 x 9 
chessboard, so that no king can capture another. The player who is unable to do 
this loses. 

Problem 13. (a) Two players take turns placing bishops on the squares of a chess­
board. At each turn, the bishop must threaten at least one square not threatened 
by another bishop. A bishop "threatens" the square it is placed on. The player 
who cannot move is the loser. (b) • The same game, but with rooks (castles). 

Problem 14. Given a 10 x 10 chessboard, two players take turns covering pairs of 
squares with dominoes. Each domino consists of a rectangle 1 square in width and 
2 squares in length (which can be held either way). The dominoes cannot overlap. 
The player who cannot place a domino loses. 
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Problem 15. A checker is placed on each square of an 11 x 11 checkerboard. 
Players take turns removing any number of checkers which lie next to each other 
along a row or column. The winner is the player who removes the last checker. 

Problem 16. There are two piles of stones. One has 30 stones, and the other has 
20 stones. Players take turns removing as many stones as they please, but from 
one pile only. The player removing the last stone wins. 

Problem 17. Twenty points are placed around a circle. Players take turns joining 
two of the points with a line segment which does not cross a segment already drawn 
in. The player who cannot do so loses. 

Problem 18. A daisy has (a) 12 petals; (b) 11 petals. Players take turns tearing 
off either a single petal, or two petals right next to each other. The player who 
cannot do so loses. 

Problem 19! Given a rectangular parallelepiped of dimensions (a) 4 x 4 x 4; (b) 
4 x 4 x 3; (c) 4 x 3 x 3, consisting of unit cubes. Players take turns skewering a row 
of cubes (parallel to the edges of the figure), so long as there is at least one cube 
which is not yet skewered in the row. The player who cannot do so loses. 

Problem 20. Two players take turns breaking a piece of chocolate consisting of 
5 x 10 small squares. At each turn, they may break along the division lines of the 
squares. The player who first obtains a single square of chocolate wins. 

Problem 21. Two players take turns placing x's and o's on a 9 x 9 checkerboard. 
The first player places x's, and the second player places o's. At the end of the play, 
the first player gets a point for each row or column which contains more x's than 
o's. The second player gets a point for each row or column which contains more 
o's than x's. The player with the most points wins. 

§3. Winning positions 

Problem 22. On a chessboard, a rook stands on square al. Players take turns 
moving the rook as many squares as they want, either horizontally to the right or 
vertically upward. The player who can place the rook on square h8 wins. 

In this game, the second player will win. The strategy is quite simple: at each 
turn, place the rook on the diagonal from al to h8. The reason this works is that 
the first player is forced to move the rook off the diagonal at each turn, while the 
second player can always put the rook back on this diagonal. Since the winning 
square belongs to the diagonal, the second player will eventually be able to place 
the rook on it. 

Let us analyze this solution a little more deeply. We have been able here to 
define a class of winning positions (in which the rook is arr the diagonal from al to 
h8), which enjoys the following properties: 

(1) The final position ·of the game is a winning one; 
(2) A player can never move from one winning position to another in a single 

turn; 
(3) A player can always move from a non-winning position to a winning one in 

a single move. 
The discovery of such a class of winning positions for a given game is equivalent 

to solving the game. Indeed, moving to a winning position at each move constitutes 
a winning strategy. If the initial position of the game is a winning one, then the 
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second player will win (as in the game described above). Otherwise, the first player 
will win. 

For teachers. As the concept of a winning position generalizes a set of 
strategies, it can only be understood after solving several of the games presented 
in this section. As always, it is important to have students play each game before 
solving it. 

Problem 23. A king is placed on square al of a chessboard. Players take turns 
moving the king either upwards, to the right, or along a diagonal going upwards 
and to the right. The player who places the king on square hB is the winner. 

Problem 24. There are two piles of candy. One contains 20 pieces, and the 
other 21. Players take turns eating all the candy in one pile, and separating the 
remaining candy into two (not necessarily equal) non-empty piles. The player who 
cannot move loses. 

Problem 25. A checker is placed at each end of a strip of squares measuring 1 x 20. 
Players take turns moving either checker in the direction of the other, each by one 
or by two squares. A checker cannot jump over another checker. The player who 
cannot move loses. 

Problem 26. A box contains 300 matches. Players take turns removing no more 
than half the matches in the box. The player who cannot move loses. 

Problem 27. There are three piles of stones. The first contains 50 stones, the 
second 60 stones, and the third 70. A turn consists in dividing each of the piles 
containing more than one stone into two smaller piles. The player who leaves piles 
of individual stones is the winner. 

Problem 28. The number 60 is written on a blackboard. Players take turns 
subtracting from the number on the blackboard any of its divisors, and replacing 
the original number with the result of this subtraction. The player who writes the 
number 0 loses. 

Problem 29! There are two piles of matches: 
(a) a pile of 101 matches and a pile of 201 matches; 
(b) a pile of 100 matches and a pile of 201 matches. 

Players take turns removing a number of matches from one pile which is equal to 
one of the divisors of the number of matches in the other pile. The player removing 
the last match wins. 

§4. Analysis from the endgame: A method of finding winning positions 

Readers of the previous section may get the feeling that the discovery of a set 
of winning positions is based only on intuition, and is therefore not simple. We now 
describe a general method which will allow us to find a set of winning positions in 
many games. 

We return to Problem 23, the problem about the single king on a chessboard. 
Let us try to find a set of winning positions. As always, the final position of the 
game, with the king in square hB, must be a winning one. We therefore place a 
plus sign in square hB (see Figure 46). We will place the same sign in every other 
square at which the king occupies a winning position, and a minus sign in every 
square which is not a winning position (we will call them losing positions). 
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• FIGURE 46 

Since those squares from which the king can move to a winning square in a 
single move are losing squares, we arrive at Figure 47. From squares h6 and /8 
we can move only to losing squares, so these must be winning positions (Figure 
48). These new winning positions lead to new losing positions: h5, g5, g6, f7, 
e7, e8 (Figure 49). We continue in an analogous fashion (see Figures 50 and 51). 
After obtaining a set of minuses, we place plus signs in those squares from which 
any move at all leads to a losing square, then place minuses in those squares from 
which there is at least one move to a winning square. The pluses and minuses will 
finally be arranged as in Figure 52. It is not difficult to see that the squares with 
plus signs in them are exactly the winning squares indicated in the previous section . 

••• Figure 47 Figure 48 Figure 49 

• •-~=~=~ - + - + .. - - -
- + 

-+-+-+-+ 

--t-+-+-+ 

-+-+-+-+ 

-+-+-+-+ --------
Figure 50 Figure 51 Figure 52 

The method of finding winning positions just described is called analysis from 
the endgame. Applying it to the game with the castle (Problem 22) from the 
previous section, it is not hard to derive the set of winning positions for this game 
as well. Working as in Figures 53 and 54, we soon arrive at Figure 55. 
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Figure 53 Figure 54 Figure 55 

For teachers. Students often perform their own "analysis from the endgame" 
intuitively. That is, they can see to the end of the game from a few moves before, 
and begin to learn which of the last few possible moves are winning ones, then 
generalize this to the rest of the game. The best learning will occur if students make 
this discovery on their own (by playing the game), then are asked to articulate it. 
Problem 30. A queen stands on square cl of a chessboard. Players take turns 
moving the queen any number of squares to the right, upwards, or along a diagonal 
to the right and upwards. The player who can place the queen in square h8 wins. 
Solution. Using analysis from the endgame, we obtain the configuration of pluses 
and minuses given in Figure 56. Thus, the first player wins; in fact, he has a choice 
of three initial moves. These are to squares c5, e3, or dl. 

• 
-------

FIGURE 56 

For teachers. This game can serve as a good introduction to analysis from 
the endgame. Student exercises can then be created, for example, by replacing 

' the square checkerboard in Problems 22, 23, 30 with a rectangular board of any 
dimensions, or with a board of some other unusual form. For instance, one might 
solve Problem 22 on a checkerboard with the middle four squares removed (or, with 
some other squares removed). The arrangement of pluses and minuses on this sort 
of checkerboard is shown in Figure 57, in which the missing squares are shaded . 

• 
-------

FIGURE 57 
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The following problem provides a chance for students to practice the technique 
of reformulating a game. 

Problem 31. Of two piles of stones, one contains 7 stones, and the other 5. Players 
alternate taking any number of stones from one of the piles, or an equal number 
from each pile. The player who cannot move loses. 

Solution. We can restate the situation in this problem as one which occurs on 
the usual chessboard. First we assign coordinates to each square, by numbering 
the rows from 0 to 7, starting at the top, and the columns from 0 to 7, starting at 
the right. Each position of the original game is characterized by an ordered pair of 
numbers: the number of stones in the first pile, followed by the number of stones in 
the second. To each such position we assign the square whose coordinates are these 
numbers. Now we note that a move in the original game corresponds to a queen's 
move on the chessboard, upwards, to the right, or on a diagonal upwards and to 
the right. This restatement of the problem makes the game identical to that of 
Problem 30. Notice that we can use the same technique to reformulate the games 
in Problems 10 and 20. 

* 

Problem 32. A knight is placed on square al of a chessboard. Players alternate 
moving the knight either two squares to the right and one square up or down, or two 
squares up and one square right or left (and usual knight moves but in restricted 
directions). The player who cannot move loses. 

Problem 33. (a) There are two piles of 7 stones each. In each turn, a player may 
take a single stone from one of the piles, or a stone from each pile. The player who 
cannot move loses. 

(b) In addition to the moves described above, players are allowed to take a 
stone from the first pile and place it on the second pile. Other rules remain the 
same. 

Problem 34. There are two piles of 11 matches each. In one turn, a player must 
take two matches from one pile and one match from the other. The player who 
cannot move loses. 

Problem 35. This game begins with the number 0. In one turn, a player can 
add to the current number any natural number from 1 through 9. The player who 
reaches the number 100 wins. 

Problem 36. This game begins with the number l. In one turn, a player can 
multiply the current number by any natural number from 2 through 9. The player 
who first names a number greater than 1000 wins. 

Problem 37. This game begins with the number 2. In one turn, a player can add 
to the current number any natural number smaller than it. The player who reaches 
the number 1000 wins. 

Problem 38. This game begins with the number 1000. In one turn, a player can 
subtract from the current number any natural number less than it which is a power 
of 2 (note that 1 = 2°). The player who reaches the number 0 wins. 



CHAPTER 8 

Problems for the First Year 

As was emphasized in the preface, the first part of this book presents the basic 
topics for sessions of an "olympiad" mathematical circle (for students of age 11-13). 
However, these topics do not exhaust all the themes available for students of this 
age. In the present chapter we will try to fill this gap, at least partly. 

For teachers. We would also like to say that we do not recommend preparing 
a session using only problems pertaining to a single topic. You can also use non­
standard problems, which require something new and unusual, fresh ideas, or just 
the overcoming of technical difficulties. Since such problems are important for 
olympiads, contests, et cetera, we have gathered them together in this chapter. 

§1. Logical problems 

For teachers. When dealing with young students keep in mind that the most 
important goal is to teach them consistent and clear thinking; that is, how not to 
confuse cause and consequence; how to analyze cases carefully, without skipping 
any; how to build a chain of propositions and lemmas properly. The following 
problems in logic can help you in handling this. 
1. Peter's mom said: "All champions are good at math." Peter says: "I am good 
at math. Therefore I am a champion!" Is his implication right or wrong? 

2. There are four cards on the table with the symbols A, B, 4, and 5 written on 
their visible sides. What is the minimum number of cards we must turn over to 
find out whether the following statement is true: "If an even number is written on 
one side of a card then a vowel is written on the other side"? 

3. A sum of fifteen cents was paid by two coins, and one of these coins was not a 
nickel. Find the values of the coins. 

4. Assume that the following statements are true: 
a) among people having TV sets there are some who are not mathematicians; 
b) non-mathematicians who swim in swimming pools every day do not have 

TV sets. 
Can we claim that not all people having TV sets swim every day? 

5. During a trial in Wonderland the March Hare claimed that the cookies were 
stolen by the Mad Hatter. Then the Mad Hatter and the Dormouse gave testimonies 
which, for some reason, were not recorded. Later on in the trial it was found out 
that the cookies were stolen by only one of these three defendants, and, moreover, 
only the guilty one gave true testimony. Who stole the cookies? 

65 
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6. In a box, there are pencils of at least two different colors, and of two different 
sizes. Prove that there are two pencils that differ both in color and in size. 

7. There are three urns containing balls: the first one contains two white balls, 
the second-two black balls, and the third-a white ball and a black ball. The 
labels WW, BB, and WB were glued to the urns so that the contents of no urn 
corresponds to its label. Is it possible to choose one urn so that after drawing a 
ball from it one can always determine the contents of each urn? 

8. Three people-A, B, and C-are sitting in a row in such a way that A sees B and 
C, B sees only C, and C sees nobody. They were shown 5 caps-3 red and 2 white. 
They were blindfolded, and three caps were put on their heads. Then the blindfolds 
were taken away and each of the people was asked if they could determine the color 
of their caps. After A, and then B, answered negatively, C replied affirmatively. 
How was that possible? 

9. Three friends-sculptor White, violinist Black, and artist Redhead-met in a 
cafeteria. "It is remarkable that one of us has white hair, another one has black 
hair, and the third has red hair, though no one's name gives the color of their hair" 
said the black-haired person. "You are right," answered White. What color is the 
artist's hair? 

The next eight problems take place on an island where all the inhabitants are 
either "knights" who always tell the truth or "knaves" who always lie (for many 
more such problems see [16]). 

10. Person A said "I am a liar." Is he an inhabitant of our island? 

11. What one question might be asked of an islander to find out where a road 
leads-to the city of knights or to the city of knaves? 

12. What one question might be asked of an islander to find out whether she has 
a pet crocodile? 

13. Assume that in the language of the island the words ''yes" and "no" sound like 
"flip" and "flop", but we do not know which is which. What one question might 
be asked of an islander to find out whether he is a knight or a knave? 

14. What one question might be asked of an islander so that the answer is always 
"flip"? 

15. An islander A, in the presence of another islander B, said: "At least one of us 
is a knave." Is A a knight or a knave? What about B? 

16. There are three people, A, B, and C. Among them is a knight, a knave, and a 
stranger (a normal person), who sometimes tells the truth and sometimes lies. 

A said: "I am a normal person." 
B said: "A and C sometimes tell the truth." 
C said: "B is a normal person." 

Who among them is a knight, who is a knave, and who is a normal person? 

17. Several islanders met at a conference, and each of them told the others: "You 
are all knaves." How many knights might there be at that conference? 
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§2. Constructions and weighings 

Mathematical and logical problems whose solution consists of a particular con­
struction; that is, creating an example, are very common and useful. The students 
should understand that a construction may serve as a complete solution to problems 
of a certain type (such as those starting with the words "Is it possible to ... ?"). 
Such problems are usually quite attractive to younger students, and they can spend 
a lot of time trying to find a constructive solution to a tricky question or puzzle. 

18. There are two egg timers: one for 7 minutes and one for 11 minutes. We must 
boil an egg for exactly 15 minutes. How can we do that using only these timers? 

19. There are two buttons inside an elevator in a building with twenty floors. The 
elevator goes 13 floors up when the first button is pressed, and 8 floors down when 
the second one is pressed (a button will not function if there are not enough floors 
to go up or down). How can we get to the 8th floor from the 13th? 

20. The number 458 is written on a blackboard. It is allowed either to double the 
number on the blackboard, or to erase its last digit. How can we obtain the number 
14 using these operations? 

21. Cards with the numbers 7, 8, 9, 4, 5, 6, 1, 2, and 3 are laid in a row in the 
indicated order. It is permitted to choose several consecutive cards and rearrange 
them in the reverse order. Is it possible to obtain the arrangement 1, 2, 3, 4, 5, 6, 
7, 8, 9 after three such operations? 

22. The numbers 1 through 16 are placed in the boxes of a 4 x 4 table as shown 
in Figure 58 (a). It is permitted to increase all the numbers in any row by 1 or 
decrease all the numbers in any column by 1. Is it possible to obtain the table 
shown in Figure 58 (b) using these operations? 

1 2 3 4 1 II 8 13 

II 8 7 8 2 8 10 14 

8 10 11 12 3 7 11 16 

13 14 111 18 4 8 12 18 

(8) (b) 

FIGURE 58 

23. Is it possible to write the numbers 1 through 100 in a row in such a way that 
the (positive) difference between any two neighboring numbers is not less than 50? 

24. Divide a set of stones which weigh lg, 2g, 3g, ... , 555g into three heaps of 
equal weight. 
25. Fill the boxes of a 4 x 4 table with non-zero numbers so that the sum of the 
numbers in the corners of any 2 x 2, 3 x 3, or 4 x 4 square is zero. 
26. Is it possible to label the edges of a cube using the numbers 1 through 12 in 
such a way that the sums of the numbers on any two faces of the cube are equal? 
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FIGURE 59 

27: Is it possible to place the numbers O through 9 in the circles in Figure 59 
without repetitions so that all the sums of the numbers in the vertices of the shaded 
triangles are equal? 

28. Prove that one can cross out several digits at the beginning and several at the 
end of the 400-digit number 84198419 ... 8419 in such a way that the sum of the 
remaining digits is 1984. 

29. Find a two-digit number, the sum of whose digits does not change when the 
number is multiplied by any one-digit number. 

30. Do there exist two consecutive natural numbers such that the sums of their 
digits are both divisible by 7? 

31. Do there exist several positive numbers, whose sum is 1, and the sum of whose 
squares is less than 0.01? 

32. A castle consists of 64 identical square rooms, having a door in every wall and 
arranged in an 8 x 8 square. All the floors are colored white. Every morning a 
painter walks through the castle recoloring floors in all the rooms he visits from 
white to black and vice versa. Is it possible that some day the rooms will be colored 
as a standard chessboard is? 

33. Can one place a few dimes on the surface of a table so that each coin touches 
exactly three other coins? 

34. In a warehouse N containers marked 1 through N are arranged in two piles. 
A forklift can take several containers from the top of one pile and place them on 
the top of the other pile. Prove that all the containers can be arranged in one pile 
in increasing order of their numbers with 2N - 1 such operations of the forklift. 

* 

There are many problems involving weighing which are closely related to con­
struction problems. In solving these problems, we must not neglect even the sim­
plest or most unlikely cases. Arguments like "We will consider the worst case" are 
usually very vague and unacceptable. 

In all the problems of this set we consider "a weighing" as performed on a 
standard balance with two pans but without arrows or weights, unless otherwise 
specified. 
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35. There are 9 coins, one of whiCh is counterfeit (it is lighter than the others). 
Find the counterfeit coin using two weighings. 

36. There are 10 bags with coins. One of them contains only counterfeit coins, 
each of which is 1 gram lighter than a genuine coin. Using only one weighing on 
a balance with an arrow showing the difference between weights on the pans, find 
the "counterfeit" bag. 

37. There are 101 coins, and only one of them differs from the other (genuine) ones 
by weight. We have to determine whether this counterfeit coin is heavier or lighter 
than a genuine coin. How can we do this using two weighings? 

38. There are 6 coins; two of them are counterfeit and are lighter than the genuine 
coins. Using three weighings, determine both counterfeit coins. 

39. There are 10 bags with coins, and some of these bags contain only counterfeit 
coins. A counterfeit coin is lg lighter than a genuine coin. One of the bags is 
known to be filled with the genuine coins. Using one weighing on a balance with 
one pan and with an arrow showing the weight on the pan, determine which bags 
are "counterfeit" and which are not. 

40. There are 5 coins, three of which are genuine. One is counterfeit and heavier 
than a genuine coin, and another one is counterfeit and lighter than a genuine coin. 
Using three weighings, find both counterfeit coins. 

41. There are 68 coins of different weight. Using 100 weighings, find the heaviest 
and the lightest of the coins. 

42. There are 64 stones of different weight. Using 68 weighings, find the heaviest 
and the second heaviest stones. 

43. We have 6 weights: two green, two red, and two white. In each pair one of the 
weights is heavier. All the heavy weights have the same weight, and all the light 
weights have the same weight. Using two weighings, determine which weights are 
the heavy ones. 

44. There are 6 coins, two of which are counterfeit: they are O.lg heavier than the 
genuine coins. The pans of a balance are out of equilibrium only if the difference 

, of weights is at least 0.2g. Find both counterfeit coins using four weighings. 

45. a) There are 16 coins. One of them is counterfeit: it differs in weight from 
a genuine coin, though we do not know whether it is heavier or lighter. Find the 
counterfeit coin using four weighings. 

b)'There are 12 coins. One of them is counterfeit: it differs by weight from 
a genuine coin, though we do not know whether it is heavier or lighter. Find the 
counterfeit coin using three weighings. 

46! Fourteen coins were presented in court as evidence. The judge knows that 
exactly 7 of these are counterfeit and weigh less than the genuine coins. A lawyer 
claims to know which coins are counterfeit and which are genuine, and she is re­
quired to prove it. How can she accomplish this using only three weighings? 

§3. Problems in geometry 

The problems in this section can be split naturally into two sets. The first 
set (Problems 47-57) continues the previous section: it is dedicated to geometric 
constructions. The second set contains more "standard" geometry problems. 
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4 7. Draw a broken line made up of 4 segments passing through all 9 points shown 
in Figure 60. 

• • • 

• • • 

• • • 

FIGURE 60 

48. Cut a square into 5 rectangles in such a way that no two of them have a 
complete common side {but may have some parts of their sides in common). 

49. Is it possible to draw a closed 8-segment broken line which intersects each 
segment of itself exactly once? 

50. Is it possible to cut a square into several obtuse triangles? 

51. Is it true that among any 10 segments there always are 3 which can form a 
triangle? 

52. A king wants to build 6 fortresses and connect each pair of them by a road. 
Draw a scheme of fortresses and roads such that there are only 3 crossroads, each 
formed by 2 intersecting roads. 

53. Is it possible to choose 6 points on the plane and connect them by disjoint 
segments {that is, by segments which do not have common inner points) so that 
each point is connected with exactly 4 other points? 

54. Can we tile the plane with congruent pentagons? 

55. Cut a 3 x 9 rectangle into 8 squares. 

56. Prove that a square can be dissected into 1989 squares. 

57. Cut an arbitrary triangle into 3 parts such that they can be rearranged to form 
a rectangle. 

* 

58. Points M and K are given on sides AB and BC of triangle ABC respectively. 
Segments AK and CM meet at point 0. Prove that if OM= OK and LKAC = 
LMCA, then triangle ABC is isosceles. 

59. Altitude AK, angle bisector BH, and median CM of triangle ABC meet at 
one point 0, and AO= BO. Prove that triangle ABC is equilateral. 

60. In hexagon ABCDEF triangles ABC, ABF, FED, CDB, FEA, and CDE 
are congruent. Prove that diagonals AD, BE, and CF are equal. 

61. Altitude CH and median BK are drawn in acute triangle ABC. If BK= CH, 
and LKBC = LHCB, prove that triangle ABC is equilateral. 
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62. Diagonals AC and BD of quadrilateral ABCD meet at point 0. The perime­
ters of triangles ABC and ABD are equal, as are the perimeters of triangles AC D 
and BCD. Prove that AO= BO. 

63. Prove that the star shown in Figure 61 cannot be drawn to satisfy the following 
inequalities: BC> AB, DE> CD, FG > EF, HI> GH, KA> IK. 

D 

F 

K H 

FIGURE 61 

§4. Problems on integers 

This topic has already been discussed in the chapter "Divisibility and Remain­
ders". However, there are many nice problems dealing with integers, so many that 
we consider it necessary to gather some of them in this section. For instance, the 
set of Problems 70--84 is just an extension of the chapter on divisibility. Other 
problems bring in new themes. 

64. If every boy in a class buys a muffin and every girl buys a sandwich, they will 
spend one cent less than if every boy buys a sandwich and every girl buys a muffin. 

' We know that the number of boys in the class is greater than the number of girls. 
Find the difference. 

65. 175 Humpties cost more than 126 Dumpties. Prove that you cannot buy three 
Humpties and one Dumpty for one dollar. 

66. In a class every boy is friends with exactly three girls, and every girl is friends 
with exactly two boys. It is known that there are only 19 desks (each holding at 
most two students), and 31 of the students in the class study French. How many 
students are there? 

67. Two teams played each other in a decathlon. In each event the winning team 
gets 4 points, the losing team gets 1 point, and both teams get 2 points in case of a 
draw. After all 10 events the two teams have 46 points together. How many draws 
were there? 

68. Four friends bought a boat. The first friend paid half of the sum paid by the 
others; the second paid one third of the sum paid by the others; the third paid 
one quarter of what was paid by the others, and the fourth friend paid 130 dollars. 
What was the price of the boat, and how much did each of the friends pay? 
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69. The road connecting two mountain villages goes only uphill or downhill. A bus 
always travels 15 mph uphill and 30 mph downhill. Find the distance between the 
villages if it takes exactly 4 hours for the bus to complete a round trip. 

70. Do there exist natural numbers a and b such that ab(a - b) = 45045? 

71. Let us denote the sum of three consecutive natural numbers by a, and the sum 
of the next three consecutive natural numbers by b. Can the product ab be equal 
to 111111111? 

72. Prove that the last non-zero digit of the number 1985! is even. 

73. The natural numbers x and y satisfy the relation 34x = 43y. Prove that the 
number x + y is composite. 

7 4. Do there exist non-zero integers a and b such that one of them is divisible by 
their sum while the other is divisible by their difference? 

75. The prime numbers p and q, and natural number n satisfy the following 
equality: 

1 1 1 1 -+-+-=-. 
P q pq n 

Find these numbers. 

76. Prove that a natural number written using one 1, two 2's, three 3's, ... , nine 
9's cannot be a perfect square. 

77. Each of the natural numbers a, b, c, and d is divisible by ab - ed. Prove that 
ab - cd equals either 1 or -1. 

78. In a certain country, banknotes of four types are in circulation: 1 dollar, 10 
dollar, 100 dollar, and 1000 dollar bills. Is it possible to pay one million dollars 
using exactly half a million notes? 

79. The number 1 is written on a blackboard. After each second the number on 
the blackboard is increased by the sum of its digits. Is it possible that at some 
moment the number 123456 will be written on the blackboard? 

80. Prove that the number 3999991 is not prime. 

81. a) Find a seven-digit number with all its digits different, which is divisible by 
each of those digits. 

b) Does there exist an eight-digit number with the same property? 

82. We calculate the sum of the digits of the number 19100 . Then we find the sum 
of the digits of the result, et cetera, until we have a single digit. Which digit is 
this? 

83. Prove that the remainder when any prime number is divided by 30 is either 1 
or a prime number. 

84. Does there exist a natural number such that the product of its digits equals 
1980? 

* * 



8. PROBLEMS FOR THE FIRST YEAR 73 

85. A natural number ends in 2 .. If we move this digit 2 to the beginning of the 
number, then the number will be doubled. Find the smallest number with this 
property. 

86. Given a six-digit number abcdef such that abc - def is divisible by 7, prove 
that the number itself is also divisible by 7. 

87. Find the smallest natural number which is 4 times smaller than the number 
written with the same digits but in the reverse order. 

88. A three-digit number is given whose first and last digits differ by at least 2. 
We find the difference between this number and the reverse number (the number 
written with the same digits but in the reverse order). Then we add the result to 
its reverse number. Prove that this sum is equal to 1089. 

* 

89. Which number is greater: 2300 or 3200? 

90. Which number is greater: 3111 or 1714? 

91. Which number is greater: 5099 or 99!? 

92. Which number is greater: 888 ... 88 x 333 ... 33 or 444 ... 44 x 666 ... 67 (each 
of the numbers has 1989 digits)? 

93. Which type of six-digit numbers are there more of: those that can be repre­
sented as the product of two three-digit numbers, or those that cannot? 

94. Several identical paper triangles are given. The vertices of each one are marked 
with the numbers 1, 2, and 3. They are piled up to form a triangular prism. Is it 
possible that all the sums of the numbers along the edges of the prism are equal to 
55? 

95. Can one place 15 integers around a circle so that the sum of every 4 consecutive 
numbers is equal either to 1 or 3? 

96! Find a thousand natural numbers such that their sum equals their product. 

97. The numbers 21989 and 51989 are written one after another. How many digits 
in all are there? 

98. A bus ticket (whose number in Russia consists of 6 arbitrary digits) is called 
"lucky" if the sum of its first three digits equals the sum of the last three. Prove 
that the number of "lucky" tickets equals the number of tickets with the sum of 
their digits equal to 27. 

§5. Miscellaneous 

99. Fourteen students in a class study Spanish, and eight students study French. 
We know that three students study both languages. How many students are there 
in the class if every one of them is studying at least one language? 

100. The plane is colored using two colors. Prove that there are two identically 
colored points exactly 1 meter apart. 
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101. A straight line is colored using two colors. Prove that we can find a segment 
of non-zero length with its endpoints and midpoint colored the same. 

102. A 8 x 8 square is formed by 1 x 2 dominos. Prove that some pair of them 
forms a 2 x 2 square. 

103. A 3 x 3 table is filled with numbers. It is allowed to increase each number 
in any 2 x 2 square by l. Is it possible, using these operations, to obtain the table 
shown in Figure 62 from a table filled with zeros? 

4 9 5 

10 18 12 

6 13 7 

FIGURE 62 

104. We call a bus overcrowded if there are more than 503 of the maximum 
allowable number of passengers inside. Children ride in several buses to a summer 
camp. Which is greater: the percentage of overcrowded buses or the percentage of 
children riding in the overcrowded buses? 

105. Problem lists for the all-city olympiads in grades 6-11 are compiled so that 
each list contains eight questions, and there are exactly three questions in each 
grade which are not used in the other grades' olympiads. What is the maximum 
possible number of questions used by the problem committee? 

106. All the students in a school are arranged in a rectangular array. After that, the 
tallest student in each row was chosen, and then among these John Smith happened 
to be the shortest. Then, in each column, the shortest student was chosen, and 
Mary Brown was the tallest of these. Who is taller: John or Mary? 

107. Thirty chairs stand in a row. Every now and then a person comes and sits in 
one of the free chairs. After that, if any of the neighboring chairs is occupied, one 
of the person's neighbors stands up and leaves. What is the maximum number of 
chairs that can be occupied simultaneously, if originally 

a) all the chairs are free? 
b) ten chairs are taken? 

108. Three pawns are placed on the vertices of a pentagon. It is allowed to move 
a pawn along any diagonal of the pentagon to any free vertex. Is it possible that 
after several such moves one of the pawns occupies its original position while the 
other two have changed their places? 

109. None of the numbers a, b, c, d, e, or f equals zero. Prove that there are both 
positive and negative numbers among the numbers ab, cd, ef, -ac, -be, and -df. 

110! Professor Rubik splits his famous 3 x 3 x 3 cube with an ax. What is the 
minimum possible number of blows he needs to split the cube into 27 small cubes 
if it is allowed to put some pieces on the top of others between blows? 
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111. The boxes of a sheet of graph paper are colored using eight colors. Prove that 
one can find a figure such as shown in Figure 63 which contains two boxes of the 
same color. 

FIGURE 63 

112. A six-digit number is given. How many seven-digit numbers are there which 
will produce that number if one digit is crossed out? 

113. How many bus tickets do you have to buy in a row to be sure you have 
purchased a "lucky" ticket? (See Problem 98 for the definition of the "lucky" 
ticket. Bus tickets are numbered consecutively, and the ticket 999999 is followed 
by the ticket 000000). 

114! There was a volleyball tournament in which each team played every other 
team exactly once. We say that team A is better than team B if A defeated B, or 
if there is a team C such that A defeated C and C defeated B. Prove that the team 
which won the tournament is better than any other team. 

115! A 20 x 30 rectangle is cut from a sheet of graph paper. Is it possible to draw 
a straight line which intersects the interiors of 30 boxes of the rectangle? 

116. The natural numbers 1 through 64 are written in squares of a chessboard, 
and each number is written exactly once. Prove that numbers in some pair of 
neighboring squares differ by at least 5. 





CHAPTER 9 

Induction 
I. S. Rubanov 

§1. Process and method of induction 

(An Introduction for Teachers). Almost everyone has once had fun ar­
ranging dominoes in a row and starting a wave. Push the first domino and it topples 
the second, the second will topple the third and so forth until all the dominoes are 
toppled. Now let us change the set of dominoes into an infinite series of proposi­
tions: P1 , P2, P3 , ••• , numbered by positive integers. Assume that we can prove 
that: 

(B): the first proposition of the series is true; 
(S): the truth of every proposition in the series implies the truth of the next 

one. 
Then, in fact, we have already proved all the propositions in the series. Indeed, 

we can "push the first domino", i.e., prove the first statement (B), and then state­
ment (S) means that each domino, in falling, topples the next one. Whatever the 
"domino" (proposition) we choose, it will be eventually hit by this wave of "falling 
dominos" (proofs). 

This is a description of the method of mathematical induction (MMI). Theorem 
(B) is called base of induction, and theorem (S) is the inductive step. Our reasoning 
with the wave of falling dominoes shows that step (S) is but a shortened form of 
the chain of theorems shown in the figure below: 

We will call theorems in this chain "steps", and the process of their successive 
proof-"the process of induction". This process can be visually represented as a 
wave of proofs, running from statement to statement along a chain of theorems. 

Psychologically, the essence of induction is in its process. How can we teach 
this? We will try to show you in a dialog between teacher ( "T") and student (''S"), 
which roughly resembles a session of a real mathematical circle. At the end of the 
dialog some methodological comments for the teacher are given (references to these 
comments are indicated in the text of the dialog). 

Problem 1. T: One box was cut off from a 16 x 16 square of graph paper. Prove 
that the figure obtained can be dissected into trominos of a certain type-"corners" 
(see Figure 64.) 

S: But this is easy-any "corner" has three boxes, and 162 - 1 is divisible by 3. 

77 
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FIGURE 64 

T: If it is so easy, could you cut a 1 x 6 band into "corners"? Six is also divisible 
by 3! 

S: Well ... Actually, I should not have said that. I don't exactly know how to 
solve this problem. (I) 

T: OK, you cannot solve this problem. Perhaps you can think of another 
problem which is similar yet easier? 

S: Well, you can take another square, of smaller size, say, 4 x 4. 
T: Or 2 x 2?<2> 

S: But there is nothing to prove in this case-when you cut out any box what 
you get is just a "corner". What sense does that make? 

T: Try now to solve the problem about the 4 x 4 square. 
S: Uh-huh. A 4 x 4 square can be cut into four 2 x 2 squares. It is clear what 

to do with the one with the cut box. What about the other three? 
T: Try to cut a "corner" from them, located in the center of the big square (see 

Figure 65). 

FIGURE 65 

S: Got it! Each of them would lack one box and turn into a "corner". So we 
can solve the problem for a 4 x 4 square too. Now? 

T: Try an 8 x 8 square. It can be dissected into four 4 x 4 squares. Make use 
of this. 

S: Well, we can reason as we did before. One of those squares has the "missing" 
box in it. And we have already proved that this one can be cut into "corners". The 
three other squares will lack one box after we cut out one "corner" in the center of 
8 x 8 square--so we will be able to dissect them, too. 
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T: Do you see now how to solve the original problem? 
S: Sure. We cut the 16 x 16 square into four 8 x 8 squares. One of them contains 

the cut box. We have just proved that it can be dissected into "corners" , right? 
Then we cut out a "corner" in the center of the big square and we get three more 
8 x 8 squares, each without one box, and each can be cut into "corners". That's it! 

T: Not yet. We solved this problem by building "bridges" from similar but sim­
pler questions. Could we build such bridges once more, to other, more complicated 
questions?<3l 

S: Of course. Let us prove that one can dissect a 32 x 32 square into "corners". 
We just divide it mentally into four 16 x 16 squares ... 

T: There you are! But . . . is it possible to go further? 
S: Certainly. Having proved the proposition for a 32 x 32 square we can now 

derive, in the very same way, a method of dissection for a 64 x 64 square, then for 
a 128 x 128 square and so on ... 

T: Thus, we have an infinite chain of propositions about squares of different 
sizes. Can we say that we have proved them all? 

S: Yes, we have. First, we proved the first statement in the chain-about a 
2 x 2 square. Then we derived the second proposition from it, then the third from 
the second, et cetera. It seems quite clear that 

going along this chain we will reach any of its statements; therefore, 
all of them are true. 
T: Right. It looks like a "wave of proofs" running along the chain of theorems: 

2 x 2 --> 4 x 4 --> 8 x 8 --> . . . . It is quite evident that the wave will not miss 
any statement in this chain. 

Methodological remark. A few comments on the previous dialog. 

Comment N• l. When the student "proved" the statement of the problem using 
divisibility by 3, the teacher faced a typical classroom problem-how to explain 
the nature of the error, without giving away too much. The teacher overcomes 
this with a counterexample, prepared beforehand. It is always useful to be aware 
of such obstacles and know some ways to avoid them. This must be done easily, 
without major distraction from the flow of solution. 

Comment N• 2. This retort is not accidental. The student can hardly think about 
the 2 x 2 case as something important-it's not a problem at all (we will come across 
this psychological moment several times). However, the teacher knows this case is 
easier to start with. 

Comment N• 3. The following "step-by-step" scheme appears in this part of the 
dialog: 

2 x 2 --> 4 x 4 --> 8 x 8 --> 16 x 16 . 

We have here the beginning of the induction process: the base 2 x 2 and the first 
three steps. It is essential that we have made enough induction steps for the student 
to notice an analogy. Now, after the hint, he is able to develop the whole process 
of induction. 

In fact, there are other inductive solutions to this question but they would not 
yield any educational benefit, since the notion of induction in them is not as clear 
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as in the solution given above. Thus, the teacher leads the student away from these, 
using directive hints. The teacher here has played his part precisely: sometimes 
he leads away from a deceptive analogy and helps to save the student's energy. 
Unobtrusiveness is very important: the more the student does on his/her own the 
better. 

Let us sum up the results. The student (but more often this is the responsibility 
of the teacher) explained the scheme of MMI. The underlined sentence ("going 
along this chain we will reach any of its statements") is but an informal statement 
of the principle of mathematical induction which is the cornerstone of MMI. You 
can read about the formal side of it in any of the books [76, 78, 79]. We must 
say, though, that it would not be wise to talk about this at the very beginning 
of the discussion. It may be premature or even harmful since formalization of 
this intuitively clear statement may give rise to feelings of misunderstanding and 
uncertainty. On the contrary, one must use all means to make this scheme as 
evident and vivid as possible. Aside from the "wave" and dominoes (see Figure 
66), other useful analogies include climbing a staircase, zipping a zipper, et cetera. 

FIGURE 66 

* 

Now let us go on with our dialog: 
T: So, we have proved an infinite series of statements about the possibility of 

dissecting squares into "corners". Now, we write them all down, without any "et 
cetera's". 

S: But . . . we will certainly run out of paper. 
T: Yes, we would, if we wrote each statement separately. But all the statements 

look alike. Only the size of squares differ. This fact allows us to encode the whole 
chain in just one line: 

(*) A 2n x 2n square with one box cut out can be dissected into 
"corners". 

Here we have the variable n. Each statement in our chain can be obtained by 
replacing n with a number. For instance, n = 5 gives us a proposition about the 
32 x 32 square. And what is the tenth proposition in the chain? 

S: We substituten = lOtoget the statement about 210 x210 , i.e., the 1024xl024 
square. 
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T: Look at this: a variable is such a common thing, but it is really powerful-it 
allows us to fold an infinite chain into one short sentence. So, what is "a variable"? 

S: Well . . . it is just a letter . . . an unknown ... 
T: Remember: this "letter" denotes an empty space, a room, where you can put 

various numbers or objects. You can also call it a "placeholder". Those numbers 
or objects that are allowed to be put into the "room" are called its possible values. 
For example, the values of the variable n in (*) are the natural numbers (positive 
integers). Because of this, sentence (*) replaces the infinite chain of statements. 

Now we must recall the proof of the infinite chain (*). Let us number all the 
statements: P1 is the one about the 2 x 2 square, P2 is about the 4 x 4 square, and 
so on. 

First we proved proposition P1• Then we dealt with the infinite chain of similar 
theorems: if P1 is proved, then P2 is true; if P2 is proved, then P3 is true, et cetera. 
Let us try to encode this chain also: "For any natural n ... 

S: ... if Pn is true, then Pn+l is also true." 
T: And now, please, decode this phrase: what do Pn and Pn+l denote? 
S: 
(**) "Whichever natural number n is, if it is already proved that 

the 2n x 2n square without one box can be cut into "corners", then it 
is also true that the 2n+l x 2n+1 square without one box can be cut into 
"corners"." 

T: Can you prove that? 
S: I think so. We mentally divide the 2n+l x 2n+ 1 square into four 2n x 

2n squares. One of these lacks one box, and can be dissected into "corners" by 
assumption. Then we cut out one "corner" in the center of the big square so that 
it contains one box from each of the other three 2n x 2n squares. After that, we 
can use the assumption again! 

T: Absolutely. Note that as soon as you proved the general theorem (**), you 
proved all the theorems from the chain encoded by (**). For example, if n = 1, 
we get our old proof stating that the possibility of dissecting the 2 x 2 square 
implies the possibility of dissecting the 4 x 4 square. Therefore, just as (**) can be 
considered as encoding a whole chain of theorems, your reasoning can be considered 
as encoding a whole "wave of proofs" of those theorems. I believe you got it: it is 
useful and easier to prove a chain of similar theorems in this convoluted way. But 
first you must learn how to express a chain of theorems this way. 

The method we applied in solving Problem 1 is what we call the METHOD 
OF MATHEMATICAL INDUCTION (MMI). What is its essence? 

First, we regard statement (*) not as one whole fact but as an infinite series of 
similar propositions. 

Second, we prove the first proposition in the series-this is called the "base of 
the induction." 

Third, we derive the second proposition from the first, the third (in the same 
way) from the second, et oetera. That was the "inductive step"; (**)-is its short­
ened (convoluted) form. Sinoe, step by step, we can reach any proposition from the 
base, they are all true. 
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"A method is an idea applied twice" 
(G. Polya) 

To learn MMI successfully it is usually necessary to replay the scenario above 
for several different questions. Consider now four more "key problems". 

Problem 2. Prove that number 111 ... 11 (243 ones) is divisible by 243. 

Hint. This question may be generalized to the proposition that a number written 
with 3n ones is divisible by 3n. 

Base: 111 is divisible by 3. Students often start with the statement that 
111,111,111 is divisible by 9---<>ur base sounds too easy to them. 

Here we have two obstacles 
a) an attempt to generalize the divisibility tests for 3 and 9 and use an incorrect 

"test" for divisibility by 27; 
b) reasoning of the sort: "if a number is divisible by 3 and 9, then it is divisible 

by 27 = 3 x 9." 
The correct kind of inductive step is to divide the number written with 3n+1 ones 
by the number written with 3n ones and check that the result is a multiple of 3. 

Problem 3. Prove that for any natural number n, greater than 3, there exists a 
convex n-gon with exactly 3 acute angles. 

Comment. This question is a good key problem if students already know the fact 
that a convex polygon cannot have more than 3 acute angles. The base n = 4 can 
be checked by direct construction. 

Inductive step: Jet us "saw off" one of the non-acute angles. Then the number 
of angles in the polygon increases by 1 and all the acute angles are retained (see 
Figure 67). 

FIGURE 67 

Another way to do this--to build a new angle on one of the sides-is a bit more 
difficult. There are also other solutions (using inscribed polygons and so on) but 
most are more difficult for students to make precise. Perhaps the teacher can even 
give a hint about "sawing off" an angle. 

The statement of the question is obviously true for n = 3, but we will not gain 
anything by starting the induction from 3, because the method fails when you try 
to make the step from n = 3 to n = 4. 

Our third question gives an example of construction by induction. You can 
read about it in more detail in [79]. 
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Problem 4. ("Tower of Hanoi") Peter has a children's game. It has three spindles 
on a base, with n rings on one of them. The rings are arranged in order of their size 
(see Figure 68). It is permitted to move the highest (smallest) ring on any spindle 
onto another spindle, except that you cannot put a larger ring on top of a smaller 
one. Prove that 

FIGURE 68 

a) It is possible to move all the rings to one of the free spindles; 
b) Peter can do so using 2n - 1 moves. 
c)•It is not possible to do so using fewer moves. 

Hint. a), b): The base (n=l) is easy. 
Inductive step: We have n = k + 1 rings. By the inductive assumption we 

can move all but the largest ring to the third spindle using 2k - 1 moves. Then 
we move the remaining ring to the second spindle. After that we can move all the 
rings from the third spindle to the second using 2k - 1 moves. In all, we have made 
(2k - 1) + 1 + (2k - 1) = 2k+1 - 1 moves. It is useful to do the first few steps of 
the induction "manually", even using a physical model. 

c) This question must be used with care-it is more difficult than the others 
given here. The main idea of the proof is that to move the widest ring to the second 
spindle, we must first move all the other rings to the third spindle. 

Problem 5. The plane is divided into regions by several straight lines. Prove that 
one can color these regions using two colors so that any two adjacent regions have 
different colors (we call two regions adjacent if they share at least one line segment). 

Hint. Here we encounter another obstacle: no explicit variable for induction is 
given in the statement. Thus, we should start the solution by revealing this hidden 
variable. To do this, we can rewrite the statement as follows: ''There are n straight 
lines on a plane .... " The base can be n = 1 or n = 2 (either will work). The 
inductive step: remove for a moment the (k + l)st line, color the map obtained, 
then restore the removed line and reverse the colors of all the regions on one side 
of the line. 

For teachers. The first few key problems can be discussed according to 
the scenario of the dialog above; that is, growing the chain from one particular 
proposition. Students should understand the essence of the process of induction and 
the connection between cha.ins of theorems and propositions using integer variables. 
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If students are not well prepared one can skip the idea of constructing a chain of 
inductive steps. This can be introduced later, at a second stage, whose goal is to 
teach the students to work with the inductive step in its convoluted form. While 
doing so it would be wise to give questions in a general form (like in Problems 
3 and 4). There we already have a chain of statements and the solution may 
start right from the "unfolding", as follows: "Here we have a convoluted chain of 
theorems. What is the first theorem? The fifth? The 1995th?" However, the chain 
of inductive steps should be developed and convoluted according to the old scheme, 
until students get accustomed to it and understand well the connection between a 
long chain and its convoluted form. 

* 

To sum up their experience with key problems, students should have a clear 

General Plan for Solution by the 
Method of Mathematical Induction 

1. Find, in the statement of the question, a series of similar propositions. If 
variables are hidden you should reveal them by reformulating the question. If there 
is no chain, try to grow that chain so that the question will be a part of it. 

2. Prove the first proposition (base of the induction). 
3. Prove that for any natural number n the truth of the nth proposition implies 

the truth of the (n + l)st proposition (inductive step). 
4. If the base and the step are proved, then all the propositions in the series are 

proved simultaneously, since you can reach any of them from the base by moving 
"step-by-step". 

The last item in this scheme is the same for all the problems, so it is often 
skipped. However, knowing it is vital. Also, the first item is not emphasized and 
is natural for those who are used to MMI; nevertheless we recommend that the 
students pay close attention to it for a while. 

§2. MMI and guessing by analogy 

We continue our dialog. 

Problem 6. Into how many parts do n straight lines divide a plane if no two 
of them are parallel and no three meet at the same point? (Figure 69 shows an 
example where n = 5.) 

S: Let us try to follow the scheme. Do we have a chain? It seems so: into how 
many parts does one line divide a plane? 2 lines? 3 lines ... ? 

The base is evident: one line dissects a plane into 2 parts (half-planes). 
T: Or zero lines-into one part. 
S: By all means. Item three-the inductive step ... !? 
T: I can understand your embarrassment: we run into a new difficulty. In the 

previous problems we dealt with chains of statements, not with chains of questions. 
But we will get a chain of statements if we give hypothetical, unproved answers to 
these questions. 

S: How can we? 



9. INDUCTION 85 

FIGURE 69 

T: Try to guess a rule, a function giving the number of parts Ln in terms of 
the number of lines n. Physicists would do an experiment. We can experiment too, 
calculating the numbers Ln for small values of n. Go ahead! 

S: OK. So, Lo = 1, L 1 = 2, L 2 = 4, L3 = 7, L4 = 11. I must think a little 
.... Ah, I got it! When you add the nth line the number of parts increases by n. 
Hence, Ln = 1 + (1 + 2 + ... + n). I did it! 

T: No, not yet. Don't forget that you have only guessed it, not proved it. You 
have checked your result only for n = 0, 1, 2, 3, 4. For all other values of n this is 
just a guess based on your conjecture that adding the nth line increases the number 
of parts by n. What if this is wrong? The only guarantee is a proof. 

S: . . . by the method of mathematical induction. 
T: But we should enhance our plan from §1 by another item: 

la. If there is a chain of questions rather than a chain of statements in a 
mathematical problem, insert your hypothetical answers. You can guess the answers 
by experimenting with the first few questions in the chain. However, after you are 

, sure the answers are correct, don't forget to prove them rigorously. 

S: Now I know how to get over this. We have already proved the base, right? 
To prove the inductive step is easy: the nth line intersects the other lines at n - 1 
points, which divide the line into n parts. Therefore the nth line divides n of the 
old parts of the plane into new parts. 

The process of guessing by analogy, just demonstrated by our student, is a 
very powerful and, sometimes, very dangerous tool: it is tempting to mistake the 
regularity one finds as a proof. The two examples below can serve as good medicine 
for this disease. 

Problem 7. Is it true that the number n2 +n+41 is prime for any natural number 
n? 
Hint. The answer is no: For n = 40 we have 402 + 40 + 41 = 412 , and for n = 41 
412 + 41 + 41 = 41 · 43. But anyone trying to find an answer by "experimenting" 
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with small values of n would come to the opposite conclusion, since this formula 
gives prime numbers for n from 1 through 39. This famous example was given by 
Leonard Euler. 

Problem 8! A set of n points is taken on a circle and each pair is connected by a 
segment. It happens that no three of these segments meet at the same point. Into 
how many parts do they divide the interior of the circle? 

Hint. For n = 1, 2, 3, 4, 5 we obtain 1, 2, 4, 8, and 16 respectively. This result 
provokes a guess to the formula 2n- 1 . However, in fact, the number of parts equals 
n(n-l)(~:;-2)(n-3) + n(,,,-1) + l. 

Other similar examples can be found in [78]. 

§3. Classical elementary problems 

Among classical MMI problems in elementary mathematics three large groups 
can be distinguished: proofs of identities, proofs of inequalities and proofs of divis­
ibility questions. Though their solutions by MMI seem to be quite simple, students 
usually encounter some obstacles of a psychological as well as of a methodical na­
ture. We begin by discussing these. 

T: Let us talk more about Problem 6. Do you like the way the formula 1 + 
(1 + 2 + 3 + ... + n) looks? 

S: Not much. It is too bulky. It would be better to get rid of this ellipsis (the 
three dots). 

T: No problem. You can prove by MMI that 1+2 + 3 + ... + n = n(n + 1)/2. 
S: But . . . to use MMI you need a chain of statements .. . 
T: Take a close look: there is variable n in the formula. As we know, this is a 

good sign of a convoluted set of problems. Substitute, for instance, 1995 for n. 
S: We get 1 + 2 + ... + 1995 = 1995 · 1996/2. 
T: That is, a numerical equation. Our convoluted set of problems consists of 

all these equations (for n = 1, 2, 3, ... , 1995)! To prove the formula means to show 
that all these numerical equations are true. If we do this, we say that this equation 
is "true for all admissible values of the variable" and it is called an identity. If an 
identity contains an integer variable you can try to prove it by induction. 

S: What if our equation is not true for some n? 
T: Then it is not an identity and we will not be able to prove it-the proof of 

either the base or the inductive step will not go through. Actually, to distinguish 
between identities and other, arbitrary equations with variables, you must preface 
identities with phrases like "for any natural number n . . . it is true that ... ", but 
this is not the usual practice. It is implied that the reader knows from the context 
whether an identity or a conditional equation is being discussed. 

S: Well, let us apply MMI. Base: n = l. So we must prove that . . . 1 + 2 + 
... + 1 = 1 . 2/2 = l?! 

T: No, no. We must prove that 1 = 1 '. 2/2. You were puzzled by the formula 
1+2 + ... + n. This is quite good and convenient, but for n = 1 its "tail" 2 + ... + n 
makes no sense and, in fact, does not exist at all. 

S: OK, so the base is clear. Let us move to the second equation in the series. 
We must show that 1 + 2 = 2 · 3/2. This is easy: 3 = 3. Now, move to the third 
equation: 1 + 2 + 3 = 3 · 4/2. This is easy too: 6 = 6. To the fourth . . . it is just 
another simple calculation. So, what now? Must we check each equation directly? 
We haven't got any steps! 
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T: 'fry to rewrite the step in a general, convoluted form. 
S (after a while): I cannot do that either. 

87 

For teachers. To a person who has mastered MMI well enough, the proof 
of identities may seem rather trivial. However, our dialog shows two sources of 
problems for students. First, students often do not accept an identity with an 
integer variable as a chain of statements. This is probably because simple numerical 
identities are not considered independent propositions. Also, what is interesting in 
a statement such as 1 + 2 + 3 = 3 · 4/2 = 6? 

Second, it is next to impossible to see how the general form of the inductive step 
looks. Indeed, when you check the equations 1 + 2 = 2 · 3/2, 1+2 + 3 = 3 · 4/2, and 
so on, there is no connection between two successive facts--you just check them. 

That is why identities, despite their simplicity, cannot serve as key questions. 
To start learning and teaching mathematical induction from these will create trouble 
(this is not very important for really gifted students--they will manage to learn the 
method in any case). On the other hand, identities are very useful for practice, 
because their proofs are usually short and clear. 

T: Well, I will help you. Imagine that we follow the steps of the induction, one 
after another and the wave of proofs have reached the kth statement. What is that 
statement? 

S: We obtain 1+ 2 + 3 + ... + k = k(k + 1)/2. (#) 
T: Exactly. Now, tell me, please, what is the next statement, which the wave 

has not yet reached? 
S: Certainly, n = k + 1 and we get 1+2 + ... + (k + 1) = (k + l)(k + 2)/2. 
T: Good. Let us write this as follows: 

1 
1+2+3 + ... + k + (k + 1) = 2(k + l)(k + 2). (##) 

Now, tell me what would be the next step of induction? 
S: That's clear: to derive(##) from(#). 
T: Assume that we learned how to derive ( ##) from ( #) for any natural 

number k. Then we would have all the steps of induction proved at once. This 
means that the inductive step states that: 

For any natural k the equation 1+2+ .. . +k = k(k+ 1)/2 implies the equation 
1 +2+ ... + (k+ 1) = (k+ l)(k+2)/2. 

Jn other words: ( #) is given, and we must prove ( ##) (if k is an arbitrary 
natural number). For convenience we denote the left sides of(#) and (##) as Sk 
and sk+I respectively. 

S: Proposition (##) shows that Sk+• = Sk + (k + 1) (that is why the teacher 
has written the next-to-last summand!). Now we have already learned that Sk = 
k(k + 1)/2. Thus we have 

1 1 1 
sk+I = 2 k(k + 1) + (k + 1) = 2 [k(k + 1) + 2(k + 1)] = 2 (k + 1)(k + 2). 

T: Remember the helpful idea that we used to prove the inductive step: the 
left side of equation ( ##) was expressed with the left side of ( #) and the latter 
was substituted into the right side of(#). 



88 MATHEMATICAL CIRCLES (RUSSIAN EXPERJENCE) 

For teachers. Another difficulty now arises in connection with identities. It may 
not be clear to a student how to make a step "in letters". The teacher in our dialog 
showed how to overcome that. It is important that he used another letter-different 
from that used in the statement of the identity-to denote the variable. The point is 
that the letter k plays the role not of a variable but ofa constant (though arbitrary) 
number marking the place that the wave of our inductive proof reached at the given 
moment. It will become a variable later, in the general statement of the inductive 
step. 

Quite often, the variables in the statement of the proposition and in the step 
are both denoted by the same letter. While stating the step theorem, phrases like 
" ... now we substitute n + 1 in place of n" are used. This is not advisable in the 
beginning of the study since it disorients most students conceptually (it is hard to 
see a chain in the statement of the inductive step) as well as technically (it is not 
that easy for a beginner to substitute n + 1 for n). 

Now we can say goodbye to the characters in our dialog and go on to deal with 
problems. Problems 9-16 are about identities with the natural number n as their 
variable. 

Problem 9. Show that 1 + 3 + ... + (2n - 1) = n2 . 

Problem 10. Show that 12 +22 + ... +n2 =n(n+l)(2n+l)/6. 

Problem 11. Show that 1 · 2 + 2 · 3 + ... + (n - 1) · n = (n - l)n(n + 1)/3. 

Problem 12. Show that 
1 1 1 n-1 

N + 2-3 + ... + (n-l)n =---.,:;- · 

Problem 13. Show that 

1 + x + x2 + ... + xn = (xn+I - l)/(x - 1) . 

Problem 14. Show that 

1 1 1 n 
a(a+b) + (a+b)(a+2b) + ... + (a+(n-l)b)(a+nb) = a(a+nb)' 

where a and b are any natural numbers. 

Problem 15. Show that 

m! (m+ 1)! (m+n)! (m+n+ 1)! 
or+--1-,-+ ... +--n-,-= n!(m+l) , 

where m, n = 0, 1, 2, .... 

Problem 16. Show that 

Comments. In Problems 9-15 the proof of the inductive step is exactly the same as 
in the dialog. However, in Problem 16, it may be proved more easily by representing 
the (k+l)st left side not as a sum but as the product of the kth left side and (1-f,- ). 
This trick may also be useful in proving certain inequalities (see below). 

In Problem 11 the base is not n = 1 but n = 2. Students should see that this 
doesn't influence the process of induction. 
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In Problem 15 induction is possible on either of the two variables. It is instruc­
tive to carry out and compare both proofs. Remember to start from zero! 

Problems 11 and 12 are special cases of Problems 15 (for m = 2) and 14 (for 
a = b = 1) respectively. Given other values of m, a, and b we obtain any number 
of exercises like 11 and 12. It would be wise to let good students try to find the 
statement of the general problem which generates these exercises. 

Most of the identities 9-16 have good non-inductive proofs which are not too 
difficult. Problem 9 has a neat geometric proof (see Figure 70). Identity 11 can be 
obtained from identities 9 and 10. Identity 13 can be proved by division of xn+I -1 
by x - 1, and identity 16 by direct calculation. To prove identity 12 it suffices to 
note that its left side equals 

(1 -!) + (! - !) + ... + (-1 - .!.) ' 
2 2 3 n-1 n 

and that this sum "telescopes" . 

FIGURE 70 

This device works for other identities too. 
Discussion of these alternative proofs can be very helpful to students who have 

already mastered MMI. 

Divisibility questions constitute the next natural step in our study. The tech­
niques of forming statements and inductive steps are similar to those for identities: 
we usually find the increment of the expression under consideration and prove that 
it is divisible by a given number. Problems 17-19 have simple alternative solu­
tions (using modular arithmetic). The rather difficult Problem 22 may serve as the 
source of a number of exercises like 18-19. 

Prove that for any natural number n 
Problem 17. n 3 + (n + 1)3 + (n + 2)3 is divisible by 9. 

Problem 18. 3•n+2 + Bn - 9 is divisible by 16. 

Problem 19. 4n + 15n - 1 is divisible by 9. 
Problem 20. 11 n+2 + 122n+l is divisible by 133. 

Problem 21. 23" + 1 is divisible by 3n+l. 
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Problem 22~ abn + en + d is divisible by the positive integer m given that a + d, 
(b - l)c, and ab - a+ care divisible by m. 

Our trio of standard MMI themes is completed by questions involving inequali­
ties. Here the proofs of the inductive steps are usually more varied (see [78]). Prove 
the following inequalities: 

Problem 23. 2n > n, where n is an arbitrary natural number. 

Problem 24. Find all natural numbers n such that 
a) 2n > 2n+l; b) 2n >n2. 

Problem 25. 
1 1 1 13 

n + 1 + n + 2 + · · · + 2ri: > 24' n = 2' 3• · · · · 

Problem 26. 2n > 1 + n~, n = 2, 3, .... 

Problem 27. Prove that the absolute value of the sum of several numbers does 
not exceed the sum of the absolute values of these numbers. 

Problem 28. (1 + x)n > 1 + nx, where x > -1, x # 0, and n = 2, 3, .... 
Problem 29. 

_1 _· 3_·_5_. _. ·~(2_n_-~1) < __ 1_ 
2·4·6 ... 2n - v'2n+l' 

where n is any natural number. 

Hints. 23, 24: To prove the inductive step you may show that for any n, the 
increment of the left side of the inequality is greater than the increment of the right 
side. 

24b: Use 24a to prove the step. 
25: Prove that the left side of the inequality is monotonically increasing. 
27: Induction can proceed on the number of summands. 
28, 29: See the hint to Problem 16. 

§4. Other models of MMI 

So far we have been dealing with the basic version of MM!. When this is well 
learned we can try other, more complicated forms of induction. Some of these can be 
considered corollaries of the basic form, but it is more natural from a methodological 
point of view to discuss them separately, keeping in mind the image of "a wave of 
proofs". 

First, consider the method "Induction from all n :5 k ton= k + 1", sometimes 
called "strong induction". 

In the usual method of MMI, the inductive step consists of deriving proposition 
P.+1 from the previous proposition Pk· Sometimes, however, to show the truth of 
Pk+ 1 we must use more than one (or even all) of the previous statements P1 through 
Pk. This is certainly valid, since the wave has reached Pk and, therefore, all the 
propositions in the chain preceding it are also already proved. Thus the statement 
of the inductive step is: 

(S'): For any natural k the truth of P1, P2 , ••• , and Pk implies the truth of 
pk+I· 
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Consider an example. 

Problem 30. Prove that every natural number can be represented as a sum of 
several distinct powers of 2. 

Solution. First, let us prove the base. If the number given equals 1 or 2, then the 
existence of the required representation is simple. 

Now denote the given number by n and find the largest power of2 not exceeding 
n. Let it be 2m; that is, 2m :5 n < 2m+l. The difference d = n - 2m is less than n 
and also less than 2m, since 2m+1 = 2m + 2m. By the induction hypothesis, d can 
be represented as a sum of several different powers of 2, and it is clear that 2m is 
too big to be included. Thus, adding 2m we get the required expression for n. The 
induction is complete. 

Problem 31. Prove that any polygon (not necessarily convex) can be dissected 
into triangles by disjoint diagonals (they are allowed to meet only at vertices of the 
polygon). 

Hint. Use an induction on the number of sides. The inductive step is based on a 
lemma stating that each polygon (except a triangle) has at least one diagonal which 
lies completely within the polygon. Such a diagonal dissects the polygon into two 
polygons with fewer sides. 

Another scheme of MMI is demonstrated by 

Problem 32. It is known that x + 1/x is an integer. Prove that xn + 1/xn is also 
an integer (for any natural n). 

Solution. We have (xk + 1/xk)(x + 1/x) = xk-l + 1/xk-l + xk+l + 1/xk+1 and 
hence xk+1 +1/xk+1 = (xk + 1/xk)(x + 1/x) - (xk-l + 1/xk-1). So we see that 
the (k + l)st sum is an integer if the two preceding sums are integers. Thus the 
process of induction will go as usual if we check that the first two sums, x + 1/x 
and x2 + 1 / x2 , are integers. This is left to the reader. 

Comment. A peculiarity of this version of MMI is that the inductive step is based 
on two preceding propositions, not one. Thus, the base in this case consists of 
the first two propositions in the series (it is natural to use the word base for that 
starting segment of the chain in which the statements must be checked directly). 

Problem 33. The sequence a1, a2, ... , an, ... of numbers is such that a1 = 3, 
a2 = 5, and an+! = 3a,, - 2an-l for n > 2. Prove that a,, = 2n + 1 for all natural 
numbers n. 

Hint. See the more general Problem 43. 

Remark. In Problem 33 and the next three problems we will encounter not only 
proof by induction but also definitions by induction: all elements of the given 
sequences, except for the first few, are defined by induction, using the preceding 
elements. Sequences defined in this way are called recursive; see [75] and [77] 
for more details. See also [79], Chapter 2, about definitions, constructions, and 
calculations using induction. 

Problem 34. The sequence (an) is such that: a1 = 1, a2 = 2, an+! =a,, - <>n-1 
if n > 2. Prove that a..+6 = a,, for all natural numbers n. 
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Problem 35. The sequence of Fibonacci numbers is defined by: F1 = F2 = 1 and 
Fn+I = Fn + Fn-1 if n;::: 2. Prove that any natural number can be represented as 
the sum of several different Fibonacci numbers. 
Problem 36! Prove that the nth Fibonacci number is divisible by 3 if and only if 
n is divisible by 4. 
Hint. It is not easy to prove this fact alone by induction. Prove a more general 
statement about the repetition of remainders of Fibonacci numbers modulo 3 (with 
period 8). If you want to know more about Fibonacci numbers, see [75]. 
Problem 37. A bank has an unlimited supply of 3--peso and 5-peso notes. Prove 
that it can pay any number of pesos greater than 7. 
Hint. Try induction on the number of pesos the bank must pay. The base consists 
of three facts: 8 = 5 + 3, 9 = 3 + 3 + 3, 10 = 5 + 5. Inductive step: if the bank can 
pay k, k + 1, and k + 2 pesos, then it can pay k + 3, k + 4, and k + 5 pesos. This 
induction with a compound base may be split into three standard inductions using 
the following schemes: 

8 -> 11 -> 14 -> ... , 9 -> 12 -> 15 -> ... , and 10 -> 13 -> 16 -> .... 

Note that a similar splitting is impossible in Problems 32-36. 
There also exists a non-inductive solution to this problem based on the equa­

tions 3n + 1=5+5 + 3(n - 3) and 3n + 2 = 5 + 3(n- 1), but it is not easier than 
the solution above. 

The following three questions are very close to Problem 37. 
Problem 38. It is allowed to tear a piece of paper into 4 or 6 smaller pieces. 
Prove that following this rule you can tear a sheet of paper into any number of 
pieces greater than 8. 
Problem 39. Prove that a square can be dissected into n squares for n ;::: 6. 
Problem 40. Prove that an equilateral triangle can be dissected into n equilateral 
triangles for n ;::: 6. 

Comments. 38: If we tear a piece of paper into 4 or 6 smaller pieces, then the 
number of pieces increases by 3 or 5 respectively. Now we use the method of solution 
from Problem 37. 

FIGURE 71 
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39, 40: A square (equilateral triangle) can be dissected into 4 or 6 squares 
(equilateral triangles) as shown in Figure 71. Thus Problem 39 can be reduced to 
Problem 38. There exist other non-inductive solutions based on the possibility of 
cutting a square (equilateral triangle) into any even number (greater than 2) of 
squares (or equilateral triangles) greater than 2-see Figure 72. 

FIGURE 72 

Other schemes of induction are even more exotic. An example is the method of 
"ramifying induction" which enables us to give a proof of a remarkable inequality 
for the arithmetic and geometric means. 

Problem 41: Prove that for any non-negative numbers x 1, X2, ••. , Xn 

X1 + X2 + ... + Xn ;:,. \Yx1x2 ... Xn • 
n 

Sketch of proof. The base: n = 2 is rather simple. Then you must use steps from 
' n = 2k to 2k+ 1 in order to prove the inequality for all n equal to power of 2. And 

finally, you prove that if the inequality is true for any n numbers, then it is true 
for any n - 1 numbers. The wave of proofs spreads in accordance with the scheme 
in Figure 73. 

2--3--4 
I ! 

FIGURE 73 

9-- ... 

See details in [78] (example 24), and also in the chapter "Inequalities". 

Schemes involving "backwards induction" (over negative integers) and "double 
(or, 2-dimensional) induction" (for theorems involving two natural parameters) are 
illustrated in Problems 43 and 44. 
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§5. Problems with no comments 

Problem 42. Two relatively prime natural numbers m, n, and the number 0 are 
given. A calculator can execute only one operation: to calculate the arithmetic 
mean of two given natural numbers if they are both even or both odd. Prove that 
using this calculator you can obtain all the natural numbers 1 through n, if you 
can enter into the calculator only the three numbers initially given or results of 
previous calculations. 

Problem 43. For the sequence a1, a., . . . from Problem 33 we can define elements 
ao, a_,, a_2, ... so that the equation an+i = 3an - 2an-I will hold true for any 
integer n (positive or negative). Prove that the equality an = 2n + 1 will still be 
true for all integers n. 
Problem 44. Prove that 2m+n-2 2". mn if m and n are positive integers. 

Problem 45! Several squares are given. Prove that it is possible to cut them into 
pieces and arrange them to form a single large square. 

Problem 46! Prove that among any 2n+l natural numbers there are 2n numbers 
whose sum is divisible by 2n. 

Problem 4 7. What is the greatest number of parts into which n circles can dissect 
a plane? What about n triangles? 

Remark. Compare Problem 6. Examples of the required dissections can also be 
done by induction. 

Problem 48. Several circles are drawn on a plane. A chord then is drawn in each 
of them. Prove that this "map" can be colored using three colors so that the colors 
of any two adjacent regions are different. 

Problem 49: Prove by "reductio ad absurdum" that the principle of mathematical 
induction stated in the very beginning of the present chapter is equivalent to the 
following "well order principle": in any non-empty set of natural numbers there 
exists a least element. Try to rewrite the solution of one of the previous problems 
(say, Problem 46) using this principle and compare it to the proof by induction. 

For more about the well order principle and its applications, see [19], pp.88-96. 

* 
Conclusion. The method of mathematical induction is a very helpful and useful 
idea. You will find its applications in various places in this book, as well as in 
other mathematical contexts. However, we would like to warn you against an 
"addiction" to it. You should not think that, any question with statements and/or 
proofs using the words "et cetera" or "similarly" is a problem to be solved by MML 
Proofs by induction for many of those questions (you will see some of them in the 
chapters "Graphs-2" and "Inequalities") look rather artificial compared to other 
proofs involving such simple methods as direct calculation or recursive reasoning. 
It is not advisable to use such unnatural examples when teaching the nature of 
MMI, although they can be used well after the method is completely mastered. 



CHAPTER 10 

Divisibility-2: 
Congruence and Diophantine Equations 

§1. Congruence 

In the chapter "Divisibility and remainders" we discussed the concept of re­
mainders. We noticed that in solving many problems on divisibility we dealt mostly 
not with the numbers themselves but with their remainders when divided by some 
fixed number. 

Thus it is natural to give the following definition: integers a and b are called 
congruent modulo m if they have equal remainders when divided by m. This is 
written: a= b(mod m). 

For example, 9 = 29 (mod 10), 1 = 3 (mod 2), 16 = 9 (mod 7), 3 = 0 (mod 3), 
2n + 1=1 (mod n). Note that A is divisible by m if and only if A= 0 (mod m). 

Problem 1. Prove that a= b (mod m) if and only if a - bis divisible by m. 

Solution. If a= b (mod m), then let r be the common remainder when a or bis 
divided by m. 

a=mk1 +r, b=mk2 +r. 
Thus a - b = m(k1 - k2) is divisible by m. 

Conversely, if a-bis divisible by m, then we divide a and b by m with remainder. 
We have a= mk1 +r1, b = mk2 +r,. Hence a-b= m(k1 -k2) +r1 -r2 is, by 
assumption, divisible by m. Therefore r, -r2 is divisible by m. Since lr1 -r2I < m, 
we have r1 = r2. 

This problem allows us to give another definition of congruence: integers a and 
b are congruent modulo m if a - b is divisible by m. 

From now on we will use either definition. 

For teachers. Before giving definitions of congruence it is important to check 
whether your students remember how to work with remainders (for example, by 
giving them a few problems similar to problems from §2 in the chapter "Divisibility 
and remainders"). 

It is remarkable that our new definition leads us to easier proofs of the basic 
properties of remainders. 

Problem 2. If a= b(mod m) andc = d(mod m), prove that a+c = b+d(mod m). 

Solution. Since a-bis divisible by m and c-d is divisible by m, (a-b)+(c-d) = 
(a+ c) - (b + d) is divisible by m. 

Problem 3. If a= b(mod m) and c = d(mod m), provethata-c = b-d(mod m). 

Problem 4. If a= b(mod m) and c = d(mod m), prove that ac = bd(mod m). 

95 
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Solution. We have ac-bd = ac-bc+bc-bd = (a-b)c+b(c-d) which is divisible 
bym. 

Problem 5. If a= b(mod m) andn is any natural number, then an= bn (mod m). 

Methodological remark. Statements and proofs of properties of remainders 
look more attractive and simple when written using the language of congruences. 
For instance, without the new notation, the statement of Problem 2 would have 
read: the sum of two numbers and the sum of their remainders modulo m have 
equal remainders modulo m. 

Basically, Problems 2-5 state that congruences modulo a given number may 
be added, subtracted, multiplied, and exponentiated, like equations. We delay the 
question of division of congruences until §4. 

Before going further we show how the solution of a problem can be explained 
in the language of congruences. 

Problem 6. Prove that n 2 + 1 is not divisible by 3 for any integer n. 

Solution. It is clear that each integer n is congruent modulo 3 either to 0, or to 
1, or to 2. 

If n = 0 (mod 3), then n2 = 0 (mod 3)-(multiplication of congruences) and 
n2 + 1=1 (mod 3)-(addition of congruences). 

If n = 1 (mod 3), then n 2 + 1 = 2 (mod 3). 
If n = 2 (mod 3), then n 2 + 1 = 2 (mod 3). 
Thus we never get n2 + 1 = 0 (mod 3). 

Let us consider another problem, which shows us that using negative integers 
in congruences can be quite helpful. As a matter of fact, in the arithmetic of 
remainders we can deal with negative integers in the same way as with positive 
ones. 

Problem 7. Reduce 6100 modulo 7. 

Solution. Since 6 - (-1) = 6 + 1 = 7, we can say that 6 = -1 (mod 7). Raising 
this congruence to the power of 100 we have 6100 = (-l)IOO (mod 7); that is, 
6100 = 1 (mod 7). 

Here are several more problems using the same idea. 

Problem 8. Prove that 3099 + 61100 is divisible by 31. 

Problem 9. Prove that 
a) 43101 + 2310I is divisible by 66. 
b) an+ bn is divisible by a+ b, if n is odd. 

Problem 10. Prove that 1 n + 2n + ... + ( n - 1 )n is divisible by n for odd n. 

Problem 11. Prove that there exist infinitely many natural numbers that cannot 
be represented as a sum of three cubes. 

Problem 12. Prove that 103n+l cannot be represented as a sum of the cubes of 
two integers. 

Problems 11 and 12 are much more difficult than the preceding problems, since 
to solve them one must know which number m to divide by. 

Let us analyze the solution of Problem 12. The cube of a natural number is 
always congruent to either 0, or 1, or -1 modulo 7 (check this!). Therefore the sum 
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of two cubes is always congruent to one of the following numbers: -2, -1, 0, 1, 2. 
Since 10 = 3 (mod 7) we have 103 = -1 (mod 7) and 103n+1 is congruent to either 
3 or -3 modulo 7. Thus it cannot have the required representation. 

Let us fix a natural number n. Then the infinite set Z of all integers quite 
naturally falls into n classes: two numbers are in one class if they have equal 
remainders modulo n (i.e., are congruent modulo n). For instance, if n = 2, we 
have two classes: even and odd numbers. When solving problems on divisibility it 
is often sufficient to check the truth of statements not for every integer but only for 
one (arbitrary!) representative from each class. Remember that in problems of §2 
of the chapter "Divisibility and remainders" we usually used as representatives all 
the positive remainders modulo some number, and in Problems 11 and 12 of this 
chapter it was more helpful to choose other representatives (that is, some of the 
chosen numbers were negative). 

The next two problems illustrate the same idea. 

Problem 13. Prove that among any 51 integers there are 2 with squares having 
equal remainders modulo 100. 

Problem 14. Call a natural number n "convenient", if n2 + 1 is divisible by 
1000001. Prove that among the numbers 1, 2, ... , 1000000 there are evenly many 
"convenient" numbers. 

A concluding series of problems: 

Problem 15. a) Can the perfect square of a natural number end with 2 (that is, 
can its units digit equal 2)? 

b) Is it possible to write the square of a natural number using only the digits 
2, 3, 7, 8 (perhaps with repetitions)? 

Problem 16. Find a number, which, when added to (n2 - 1)1000. (n2 + 1)1001 

makes the result divisible by n. 

Problem 17. Find the remainder when the number 1010 + 10100 + 101ooo + ... + 
101oooooooooo is divided by 7. 

Problem 18. How many natural numbers n not greater than 10000 are there such 
that 2n - n2 is divisible by 7? 

Problem 19. Denote by k the product of the first several prime numbers (but 
more than one prime number). Prove that the number a) k - 1; b) k + 1 cannot be 
a perfect square. 

Problem 20. Does there exist a natural number n such that n2 + n + 1 is divisible 
by 1955? 

Problem 21. Prove that 11n+2 + 122n+I is divisible by 133 for any natural n. 

Solution. 

11n+2 + 122n+I = 121·lln+12 · 122n 

= 133 · 11 n - 12 · 11 n + 12 · 122n 

:= 12{122n - lln) 

= 12(144n -- lln) = 0 (mod 133). 
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This solution shows that not only beautiful ideas but also simple "manual" 
calculations may give us a neat proof. 

Problem 22! Let n be a natural number such that n + 1 is divisible by 24. Prove 
that the sum of all the divisors of n is also divisible by 24. 

Problem 23! The sequence of natural numbers a1, a., a3, ... satisfies the condi­
tion an+2 = an+! an + 1 for all n. 

a) If a1 = a2 = 1, prove that no member of the sequence is divisible by 4. 
b) Prove that an - 22 is composite for all n > 10, no matter what a, and a2 

are. 

This is the end of our list of problems about congruence for now. We should 
emphasize that almost all the following problems of this chapter, in fact, continue 
this theme. 

§2. Decimal representation and divisibility tests 

The tests for divisibility by 10, 2, 5, 4 are familiar to most people. Working 
with congruences, we can state and prove far stronger propositions. 

Problem 24. Prove that any natural number is congruent to its last digit modulo 
a) 10; b) 2; c) 5. 

Solution. Subtract the last digit from the given number. We obtain a number 
ending in zero. This number is divisible by 10 and, therefore, by 2 and 5. 

For teachers. Before starting the topic of divisibility tests it is necessary that 
the students understand the identity 

1~ = a110n-l +a210n-2 + ... +an-1101 +an I 
where the "overlined" row of digits denotes the natural number written with these 
digits in the indicated order. For example, ab= lOa + b, where a is the tens digit 
and b is the units digit of number ab. 
Problem 25. Prove that a1a2a3 ... an-Ian an-Ian (mod 4). 

Problem 26. State and prove analogous tests of divisibility for 2n and 5n. 

Now, a few problems whose solutions use the indicated divisibility tests. 

Problem 27. The last digit of the square of a natural number is 6. Prove that its 
next-to-last digit is odd. 

Solution. Since the last digit of its square is 6, the given natural number was even. 
The square of an even number is divisible by 4. Hence, the number formed by its 
two last digits must be divisible by 4. It is easy to write all two-digit numbers 
which end with 6 and are multiples of 4: 16, 36, 56, 76, 96. All their tens digits are 
odd. 

Problem 28. The next-to-last digit of the square of a natural number is odd. 
Prove that its last digit is 6. 

Problem 29. Prove that a power of 2 cannot end with four equal digits. 

Problem 30. Find at least one 100-digit number without zeros in its decimal 
representation, which is divisible by the sum of its digits. 



10. DIVISIBILITY-2 99 

Solution. Let us find, by trial and error, a number with the sum of its digits equal 
to 125. Divisibility by 125 is determined by the last three digits of a number. Thus, 
the number 111 ... 11599125 will do (the number begins with 94 ones). 

Let's discuss tests of divisibility by 3 and 9, which can also be stated in a more 
general form. 

Problem 31. Prove that any natural number is congruent to the sum of its digits 
modulo a) 3; b) 9. 

Solution. Consider the number 

aia2 ... an= a110n-I + a210n-2 + ... + an-1101 +an. 

Clearly, 10 = 1 (mod 9). Thus lQk = 1 (mod 9) for any natural k. So we have 

a110n-I + a210n-2 + ... + an-1101 +an= a1 + a2 + ... +an (mod 9) . 

The reasoning for divisibility by 3 is completely analogous. 

The next set of problems is connected with these tests. 

Problem 32. Is it possible to write a perfect square using only the digits a) 2, 3, 
6; b) 1, 2, 3 exactly 10 times each? 

Problem 33. The sum of the digits was calculated for the number 2100 , then the 
sum of the digits was calculated for the resulting number and so on, until a single 
digit is left. Which digit is this? 

Problem 34. Prove that if you reverse the order of the digits in any natural number 
and subtract the result from the initial number, then the difference is divisible by 
9. 

Problem 35. Write one digit to the left and one to the right of the number 15 so 
that the number obtained is divisible by 15. 

Problem 36. How many four-digit numbers with the two middle digits 97 are 
divisible by 45? 

Problem 37. Find the least natural number divisible by 36 which has all 10 digits 
in its decimal representation. 

Problem 38. Prove that the product of the last digit of the number 2n and of the 
sum of all its digits but the last is divisible by 3. 

Problem 39. Can the sum of the digits of a perfect square be equal to 1970? 

Problem 40. A three-digit number was decreased by the sum of its digits. Then 
the same operation was carried out with the resulting number, et cetera, 100 times 
in all. Prove that the final number is zero. 

Problem 41! Let A be the sum of the digits of 44444444, and B the sum of the 
digits of A. Find the sum of the digits of B. 

Ideas very close to those used in the proof of the test of divisibility by 9 allow 
us to prove another remarkable divisibility test. 

Problem 42. Prove that 

a1a2 ... an= an - an-1 + ... + (-1)n-1a1 (mod 11). 

Hint. 10 = -1 (mod 11), so even powers of 10 are congruent to 1, and odd powers 
to -1, modulo 11. 
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Another set of problems is devoted to this test. 

Problem 43. Prove that the number 111 ... 11 {2n ones) is composite. 

Problem 44. Prove that the number a1a2 ••• ana,. ... a2a1 is composite. 

Problem 45. Let a, b, c, d be distinct digits. Prove that cdcdcdcd is not divisible 
by aabb. 

Problem 46. A is a six-digit number with digits 1, 2, 3, 4, 5, and 6 each used one 
time. Prove that A is not divisible by 11. 

Problem 47. Prove that the difference between a number with oddly many digits 
and the number written with the same digits in reverse order is divisible by 99. 

Divisibility tests are only one way to link divisibility properties of a number with 
its decimal representation. This is demonstrated in the following set of problems. 

Problem 48. Is it possible to form two numbers using only the digits 2, 3, 4, 9 
such that one of them is 19 times greater than the other? 

Problem 49. The sum of the two digits a and b is divisible by 7. Prove that the 
number aba is also divisible by 7. 

Problem 50. The sum of the digits of a three-digit number equals 7. Prove that 
this number is divisible by 7 if and only if its two last digits are equal. 

Problem 51. a) The six-digit number abcdef satisfies the property that def - abc 
is divisible by 7. Prove that the number itself is divisible by 7. 

b) State and prove a test for divisibility by 7. 
c) State and prove a test for divisibility by 13. 

Problem 52. a) The six-digit number abcdef is such that abc + def is divisible 
by 37. Prove that the number itself is divisible by 37. 

b) State and prove a test for divisibility by 37. 

Problem 53. Is there a three-digit number abc (where a -I c) such that abc - cba 
is a perfect square? 

Problem 54. Find the smallest number written only with ones which is divisible 
by 333 ... 33 (one hundred 3's in the representation). 

Problem 55. Is it possible for the sum of the first several natural numbers to be 
divisible by 1989? 

Problem 56. Find all natural numbers which become 9 times greater if you insert 
a zero between their units digit and their tens digit. 

Solution. Write our number as lOa + b, where b is the units digit, and a is some 
natural number. We get the equation lOOa+b = 9(10a+b) and, therefore, lOa =Sb; 
that is, Sa = 4b. Hence b is divisible by 5. Investigating the two cases b = 0, b = 5, 
we find that the only answer is 45. 

Methodological remark. We have just seen that sometimes it can be very 
useful to write an equation for the digits of the required number. 

Problem 57. Zero was inserted between the digits of a two-digit number divisible 
by 3, and the result was increased by twice its hundreds digit. The number obtained 
happens to be 9 times greater than the initial one. Find the original number. 
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Problem 58. Find a four-digit number which is a perfect square, whose first two 
digits are equal and whose last two digits are equal. 

Problem 59. Find all three-digit numbers, any power of which ends with three 
digits forming the original number. 

Problem 60. The two digits 4 and 3 are written to the right of a natural number, 
then the operation is repeated many times (for instance, 51 generates 5143, then 
514343, et cetera). Prove that eventually we will have a composite number. 

Problem 61! Prove that all the numbers in the series 

10001, 100010001, 1000100010001, ... 

are composite. 

§3. Equations in integers and other problems 

A well-known problem asserts that the sum of N pesos can always be paid with 
3- and 5-peso bills if N > 7 (see the chapter "Induction", Problem 37). Translated 
into the language of equations, this means that the equation 

3x+5y=N 

always has a solution in non-negative integers x and y for natural numbers N > 7. 
In this section we will find integer solutions for similar equations and others, though 
we will usually look for integer solutions without any additional restrictions. 

Problem 62. Solve the equation 3x + 5y = 7 in integers. 

Let us analyze the solution. This will give us an opportunity to solve other 
problems analogously. 

First, we find one particular solution (this idea can often help in solving math­
ematical problems). Note that 3 · 2 + 5 · (-1) = 1. Multiplying this equation by 
7, we have 3 · 14 + 5 · (-7) = 7, and x 0 = 14, Yo= -7 is one solution (one among 
many). Thus, 

3x + 5y = 7; 3xo + 5yo = 7 . 

Subtracting one equation from the other and denoting x - x0 and y - y0 by a and 
b respectively we have 

3a+5b=O. 

So we see that b must be divisible by 3 and a by 5. Let a = 5k. Then b = -3k, 
where k can be any integer. Then, we have the set of solutions: 

x-xo=5k 
y-yo = -3k 

i.e., 
x = 14+ 5k 
y= -7-3k' 

where k is an arbitrary integer. Certainly, no other solutions exist, since our trans­
formations always give us equivalent equations. 
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For teachers. We hope your students also realize this fact clearly. Without 
a full understanding of this part of the solution-that the pairs (x, y) exhaust the 
set of solutions of equation ( •) for N = 7-it is next to impossible to go ahead. 

Problem 63. Find all integer roots of the equation 3x - 12y = 7. 

This barrier overridden, we analyze briefly the "very difficult" Problem 64. 

Problem 64. Solve the equation 1990x - 173y = 11. 

The coefficients in the equation are large enough to make it difficult to find a 
particular solution. However, it is not hard to see that the numbers 1990 and 173 
are relatively prime, and this helps. 

Lemma. The greatest common divisor (gcd} of these numbers can be represented 
as 1990m - 173n for some integers m and n. 

You can prove this lemma using the fact that all the numbers we obtain while 
calculating the gcd via Euclid's algorithm (see the chapter "Divisibility and re­
mainders") can be represented in this form. This is not easy, but we leave it to the 
reader. 

More specifically Euclid's algorithm gives us m = 2, n = 23. Therefore, we 
get (2, 23} as one particular solution of the equation 1990m - 173n = 1. Hence 
x0 = 2 · 11 = 22, y0 = 23 · 11 = 253 is a solution to the equation 

1990x - 173y = 11. 

As in Problem 62, we have that 

X = Xo + 173k = 22 + 173k, 

y = Yo + 1990k = 253 + 1990k, where k is any integer. 

Problem 65. Find all integer roots of the equation 21x + 48y = 6. 

Remark. Now, generally speaking, we can solve any equation of the form Ax + 
By = C (this is the so-called general linear Diophantine equation with two variables) 
in integers x and y. 

Theorem. If the coefficients A and B in the linear Diophantine equation are 
relatively prime, then there are integers x 0 and y0 such that Ax0 + By0 = C and 
all the roots of the equation can be given by the following formulas: 

x = Xo +Bk, y =Yo - Ak . 

Exercise. Try to state the general result and prove it rigorously. (Do not forget 
about the case when A and B &re not relatively prime and C is not divisible by 
gcd(A,B).) 

Problem 66. Solve the equation 2x + 3y + 5z = 11 in integers. (By the way, does 
it have any solutions in natural numbers?) 

Problem 67! A pawn stands on one of the boxes of a band of graph paper of unit 
width which is infinite in both directions. It can move m boxes to the right or n 
boxes to the left. Which m and n satisfy the property that the pawn can move 
onto the box just to the right of the starting box (in several moves)? What is the 
minimum number of moves needed to do this? 
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An equation with more than one variable, for which integer solutions are re­
quired, is called a Diophantine equation after the famous Greek mathematician 
Diophantos of Alexandria, who investigated such equations in very early times. Let 
us examine some more complicated Diophantine equations. 

Solve, for integer values of the variables: 

Problem 68. {2x + y)(5x + 3y) = 7. 

Problem 69. xy = x + y + 3. 

Problem 70. x2 = 14 + y2 • 

Problem 71. x2 + y2 = x + y + 2. 

Solutions to all these problems are connected with a very common idea-case­
by-case analysis. Certainly it is impossible to write down all pairs of integers and 
check for each of them whether it satisfies the equation or not. However, some 
simple transformations can reduce this analysis to just a short job. 

Here is a solution to Problem 69. Since xy-x-y = 3, we have (x-l)(y-1) = 4. 
It remains to analyze all the representations of 4 as a product of two factors. 
Answer: (x,y) = {5,2), (2,5), (0,-3), {-3,0), {3,3), {-1,-1). 

In Problems 70 and 71 we can also transform the given equation. Thus, we 
have: 

IDEA ONE: Use an appropriate transformation of the equation, then a case-by­
case analysis. 

However, even in the very next problem this idea will not work. 

Problem 72. x2 + y2 = 4z - 1. 

It is clear that one cannot transform the equation to a more tractable type; 
it is also impossible to analyze all the appropriate triples of integers. This new 
representative of our "Diophantine zoo" is remarkable in that it has no integer 
solutions. 

Indeed, which remainders can perfect squares give when divided by 4? (The 
choice of modulo 4 was determined by the form of the given equation.) The only 
possible remainders are 0 and 1. Since the sum of two such remainders cannot give 
remainder -1, we have no solutions for this equation. 

Thus we have: 

IDEA TWO: Consider remainders modulo some natural number. 

Problem 73. x2 - 7y = 10. 

Problem 74. x3 + 21y2 + 5 = O. 
Problem 75. 15x2 - 7y2 = 9. 

Problem 76. x2 + y2 + z2 = St - 1. 

Problem 77. 3m + 7 = 2n. 

Solution to Problem 74. Because x3 can be congruent modulo 7 only to 0, 1 and 
-1, x3 + 21y2 + 5 must be congruent to 5, 6, or 4, and, therefore, cannot be zero. 

Methodological remark. You probably have already noticed that "idea two" 
allows us only to prove the absence of roots. Indeed, if an equation has solutions 
modulo 7 or modulo 3, then it does not mean that the equation has at least one 
integer solution. For example, the equation 2x2 -y3 = 6 has roots modulo 7 (x = 0 
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and y = 1) and modulo 3 (x = 0 and y = 0), but it has no integer roots (this can 
be easily shown using remainders when divided by 8). 

Let us struggle now with Problem 77. We can see at once that a solution 
exists: m = 2, n = 4. Does it make sense to consider remainders? Do not jump 
to conclusions! The left side is congruent to 1 modulo 3. Since 2 = -1 (mod 3), 
this implies that n is even; that is, n = 2k. So we have 3m + 7 = 4k. Now residues 
modulo 4 can help us. We have 4k - 7 = 1 (mod 4). Hence, 3m = 1 (mod 4), which 
implies that m is also even; that is, m = 2p. The equation becomes 32• + 7 = 22k. 

What now? We use "idea one": 

7 = 22k - 32p = (2k - 3•)(2k + 3') . 

Therefore, 2k +3• = 7, 2k -3• = 1, and we obtain the unique solution k = 2, p = 1; 
that is, m = 2, n = 4. 

We used both ideas, or methods, tried earlier. Such a combination of ideas is 
a very common phenomenon in mathematics. 

Here is another Diophantine equation whose solution uses a similar combina­
tion: 

Problem 78. 3·2m+1 = n2 . 

Solution. Since n2 = 1 (mod 3), it is clear that n is not divisible by 3. Son= 3k+l 
or n = 3k + 2. We investigate each case. 

a) If n = 3k + 2, then 3 · 2m + 1 = 9k2 + 12k + 4. Simplifying, we get 

2m = 3k2 + 4k + 1 = (3k + l)(k + 1) . 

The only factors of a power of 2 are other powers of 2. Therefore, k + 1 and 
3k + 1 are powers of 2. The values k = 0 and k = 1 do fit and we have the 
solutions n = 2, m = 1 and n = 5, m = 3 respectively. However, if k :2: 2, then 
4(k + 1) > 3k + 1 > 2(k + 1). This inequality shows that k + 1 and 3k + 1 cannot 
be powers of 2 simultaneously. 

b) n = 3k + 1. Proceeding analogously we find one more root: n = 7, m = 4. 
Aside from the ideas of case-by-case analysis and factorization, the idea of 

estimation was used: 

IDEA THREE: When solving Diophantine equations, inequalities and estimates 
may be of use. 

Problem 79. 1/a + l/b + 1/c = 1. 

Problem 80. x2 - y2 = 1988. 
Problem 81. Prove that the equation 1/x - 1/y = 1/n has exactly one solution 
in natural numbers if and only if n is prime. 
Problem 82. x3 + 3 = 4y(y + 1). 

We cannot discuss, in this small section; the many other interesting and com­
plicated methods of solving Diophantine equations. Instead, we refer you to [55, 
58, 25]. 

Below are two extra problems which are much more difficult than those above. 
You might like to see the hints before you try to solve them on your own. 
Problem 83: x 2 + y2 = z2 • 

Problem 84: x 2 - 2y2 = 1. 
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§4. Fermat's "little" theorem 

This section is devoted to a remarkable and non-trivial fact in number theory 
that was stated and proved by the famous XVII century French mathematician 
Pierre de Fermat. But, before we begin, we discuss (as was promised in §1) the 
question of division of congruences. 

Problem 85. Let ka = kb (mod m) where k and m are relatively prime. Then 
a:=b(modm). 

Solution. Since ka = kb (mod m), ka - kb= k(a - b) is divisible by m. Since k 
and mare relatively prime, a - bis divisible by m; that is, a= b (mod m). 

It is easy to find examples to show that it is necessary for k and m to be 
relatively prime. Indeed, 5 · 3 = 5 · 7 (mod 10) but 3 and 7 are not congruent 
modulo 10. 

In any case, the following is true: 

Problem 86. If ka =kb (mod kn), then a= b (mod n). 

Now we are ready to state and prove Fermat's "little" theorem. 

Theorem. Let p be prime number and A be a number not divisible by p. Then 
AP-1 = 1 (mod p). 

Proof. Consider the p - 1 numbers: A, 2A, 3A, ... , (p - l)A. We can show that 
no two of these numbers have the same remainder when divided by p. Indeed, if 
kA = nA (mod p), then k = n (mod p) (see Problem 85). This is impossible if k 
and n are unequal and both are less than p. Therefore, among the remainders of 
these p - 1 numbers when divided by p each of the numbers 1 through p - 1 is 
represented exactly once. Multiplying them together, we have 

A· 2A · 3A ... (p - l)A = 1 · 2 · 3 ... (p - 1) (mod p); 

that is, (p - 1)! · AP-1 = (p - 1)! (mod p). Now p is prime, which implies that 
(p- 1)! and pare relatively prime. Using the result of Problem 85 again we obtain 
A•-1 = 1 (mod p). D 

Corollary. Let p be a prime number. Then for any integer A we have AP = 
A(modp). 

Fermat's "little" theorem is not just an unexpected and "neat" fact. It also 
provides a very powerful tool for solving many problems in arithmetic. Some of 
these are given below. 

Problem 87. Find the remainder when 2100 is divided by 101. 

Problem 88. Find the remainder when 3102 is divided by 101. 

Solution. Since 101 is prime, we get 3100 = 1 (mod 101). Thus 3102 = 9. 3100 = 
9(mod 101). 

For teachers. Such computational exercises using Fermat's theorem can become 
quite routine for students. 

Problem 89. Prove that 3003000 - 1 is divisible by 1001. 

Problem 90. Find the remainder when 8900 is divided by 29. 

Problem 91. Prove that 7120 - 1 is divisible by 143. 
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Solution. Let us prove that 7120 - 1 is divisible by 11 and 13. Indeed, (712) 10 = 
1 (mod 11) and (710) 12 = 1(mod13). 

Problem 92. Prove that the number 30239 + 23930 is not prime. 

Problem 93. Let p be a prime number, and suppose a and bare arbitrary integers. 
Prove that (a+ b)P =a•+ bP (mod p). 

Try to contrive two proofs: one utilizing Fermat's "little" theorem and the 
other using the binomial theorem (see the chapter "Combinatorics-2"). 

Problem 94. The sum of the numbers a, b, and c is divisible by 30. Prove that 
a5 + bs + c5 is also divisible by 30. 

Problem 95. Let p and q be different primes. Prove that 
a) p• + q• = p + q (mod pq). 

b) [ p• ~ q•] is even if p, q oft 2, where [x] denotes the greatest integer function. 

Problem 96. Let p be prime, and suppose p does not divide some number a. 
Prove that there exists a natural number b such that ab = 1 (mod p). 

Problem 97. (Wilson's theorem). Let p be prime. Prove that (p - 1)! = 
-l(modp). 

Problem 98. Let n be a natural number not divisible by 17. Prove that either 
n8 + 1 or n 8 - 1 is divisible by 17. 

Problem 99. a) Let p be a prime not equal to 3. Prove that the number 111 ... 11 
(p ones) is not divisible by p. 

b) Let p > 5 be a prime. Prove that the number 111 ... 11 (p - 1 ones) is 
divisible by p. 

Problem 100. Prove that for each prime p the difference 

111 ... 11222 ... 22333 ... 33 ... 888 ... 88999 ... 99 - 123456789 

(in the first number each non-zero digit is written exactly p times) is divisible by p. 



CHAPTER 11 

Combinatorics-2 

This chapter is a direct continuation of the chapter "Combinatorics-1" . The 
present material draws on results explained in that chapter. 

For teachers. Students should solve again a few problems involving the combi­
natorial ideas discussed earlier and go on only if these problems do not produce any 
difficulties. If they do, we recommend going back to the chapter "Combinatorics-!". 

The contents of this chapter are connected with one very important combina­
torial object which we begin to study right now. 

§1. Combinations 

Let us begin with a simple problem. 

Problem 1. Two students must be chosen out of a group of thirty for a mathe­
matical contest. In how many ways can this be done? 
Solution. You can choose the first participant of the contest in 30 ways. No matter 
who the first was, the second can be chosen in 29 ways. But now each pair is counted 
exactly twice. Thus the answer is 30 · 29/2 = 435 ways. Note that we have merely 
repeated the solution to Problem 22 from the chapter "Combinatorics-!". 

Assume now that we must choose a team not of two people but of k, and that 
the group consists of n students, not of 30. The number of ways this can be done 
is called the number of combinations of k elements taken from n elements and is 
denoted (Z) (to be read as "n choose k"). 

For instance, m = 2, @ = 3, (7) = n, (~) = l. Note that (~) also can be 
interpreted naturally: there is only one way to choose nobody (zero people) out of 
n. That is, (~) = 1 for all n. 

It is remarkable that some properties of these numbers can be proved by simple 
combinatorial reasoning, not using a formula for the calculation of (~). 

Property 1. (n'.:k) = (~). 

Proof. Note that a choice of k contest participants is equivalent to the choice of 
n - k students who will not take part in the contest. Thus, the number of ways to 
choose k people out of n equals the number of ways to choose n - k people out of 
n; that is, (n'.:k) = (~). 

Property 2. (nk°1) = (Z) + (k'.:i). 
107 
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Proof. Assume that there are n + 1 students in the group. Consider one of them 
and denote him or her by A. Let us divide the set of all possible teams into two 
subsets: those teams containing A, and the others which do not contain A. The 
cardinality of the first set is (k'.':1)-since we must complement the team with k -1 
more students chosen from the n students remaining. The number of teams in the 
second set equals (~). Now from the remaining n students we must choose the 
entire team. Thus (nt1) = G) + (k'.':i). 

Methodological remark. This reasoning allowed us to prove a rather sig­
nificant fact without any calculations. This phenomenon is quite characteristic for 
combinatorics. Often just a few minutes of thinking and understanding the combi­
natorial sense of a question may let us avoid cumbersome calculations. This is why 
we consider it necessary to discuss proofs like those above in detail. 

Let us now find a formula to calculate G). 
Problem 2. How many ways are there to choose a team of three students out of 
a group of 30? 

Solution. The first student can be chosen in 30 ways, the second in 29 ways, and 
the third in 28 ways. Thus we have 30 · 29 · 28 ways. However, each team was 
counted several times: the same trio of students can be chosen in different ways. 
For instance, choosing student A first, then student B, and, finally, C is the same 
as choosing C first, then A, and then B. Since the number of permutations of 3 
elements is 3!, each team was counted exactly 3! = 6 times. Therefore, (3

3°) equals 
(30 . 29 . 28) /3!. 

In just the same way we can deduce a formula for calculating (~), for arbitrary 
n and k: 

(~) =n(n-l)(n-2) ... (n-k+l)/k!. 

For teachers. The numbers (~) are central in this chapter. Thus, it is important 
to make sure that all students understand what we are counting here, and how the 
numbers of combinations can be calculated. Before revealing the general formula, 
proofs of a few problems similar to Problem 2 might be discussed. 

Let us deal with a few more problems. 

Problem 3. In how many ways can one choose 4 colors out of 7 given colors? 
Answer. G) = 35. 

Problem 4. One student has 6 math books, and another has 8 books. How many 
ways are there to exchange 3 books belonging to the first student with 3 books 
belonging to the second? 

Solution. The first student can choose his 3 books in m ways, and the second in m ways. Thus, the number of possible exchanges is m · (:) = 1120. 

Problem 5. There are 2 girls and 7 boys in a chess club. A team of four persons 
must be chosen for a tournament, and there must be at least 1 girl on the team. In 
how many ways can this be done? 

Solution. There must be either 1 or 2 girls on the team. In the latter case 2 boys 
can be added to the team in m ways. If there is only 1 girl on the team {there are 
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two ways to choose her), then the team can be completed by adding 3 boys in G) 
different ways. Therefore, in all there are G) + 2 · G) = 91 possible teams. 

Problem 6. How many ways are there to divide 10 boys into two basketball teams 
of 5 boys each? 

Solution. The first team can be chosen in (~0) ways. This choice completely 
determines the second team. However, this calculation counts each pair of com­
plementing teams-say, A and B-two times: the first time, when A is chosen as 
the first team, and the second time, when B is chosen as the first team. Thus, the 
answer is ('5°) /2. 

Methodological remark. After learning these formulas it is not obligatory 
to express the answers as decimal numbers. It is not bad if the expressions (~) are 
present in answers. 

Notice that the formula for m makes the first property of symmetry-(n".•) = 

(~)-rather unclear. However, we can make the formula look more symmetric by 
multiplying its numerator and denominator by (n - k)!: 

( n) = n(n-1) ... (n-k+l)(n-k)! 
k k!(n-k)! 

n(n-1) ... (n-k + l)(n-k) .. . 3 · 2 · l 
k!(n-k)! 

n! 
= k!(n-k)!' 

Now the first property is quite evident. 

Exercise. Prove the second property of (~), using the formula above. 

For teachers. We recommend spending at least one session of a math circle 
introducing definitions, properties, and the formula for the numbers (~). It would 
also be helpful to solve several easy problems at this session, then to give problems 
connected with this theme during the next sessions. 

Problem 7. Ten points are marked on a plane so that no three of them are on the 
same straight line. How many triangles are there with vertices at these points? 

Problem 8. A special squad consists of 3 officers, 6 sergeants, and 60 privates. In 
how many ways can a group consisting of 1 officer, 2 sergeants, and 20 privates be 
chosen for an assignment? 

Problem 9. Ten points are marked on a straight line, and 11 points are marked 
on another line, parallel to the first one. How many 

a) triangles; 
b) quadrilaterals 

are there with vertices at these points? 

Problem 10. A set of 15 different words is given. In how many ways is it possible 
to choose a subset of no more than 5 words? 

Problem 11. There are 4 married couples in a club. How many ways are there 
to choose a committee of 3 members so that no two spouses are members of the 
committee? 
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Problem 12. There are 31 students in a class, including Pete and John. How 
many ways are there to choose a soccer team ( 11 players) so that Pete and John 
are not on the team together? 

Problem 13. How many ways are there to rearrange the letters in the word 
"ASUNDER" so that vowels will be in alphabetical order, as well as consonants? 
Example: DANERUS (A-E-U, D-N-R-S). 

Problem 14. We must choose a 5-member team from 12 girls and 10 boys. How 
many ways are there to make the choice so that there are no more than 3 boys on 
the team? 

Problem 15. How many ways are there to put 12 white and 12 black checkers on 
the black squares of a chessboard? 

Problem 16. a) How many ways are there to divide 15 people into three teams of 
5 people each? 

b) How many ways are there to choose two teams of 5 people each from 15 
people? 

Problem 17. In how many ways can you choose 10 cards from a deck of 52 cards 
so that 

a) there is exactly one ace among the chosen cards? 
b) there is at least one ace among the chosen cards? 

Problem 18. How many six-digit numbers have 3 even and 3 odd digits? 

Problem 19. How many ten-digit numbers have the sum of their digits equal to 
a) 2; 
b) 3; 
c) 4? 

Problem 20. A person has 6 friends. Each evening, for 5 days, he or she invites 
3 of them so that the same group is never invited twice. How many ways are there 
to do this? 

Problem 21. Th participate in a sports lottery in Russia one must choose 6 out 
of the 45 numbers printed on a lottery card (all the printed cards are identical). 

a) How many ways are there to fill in the lottery card? 
b) After the end of the lottery, its organizers decided to count the number of 

ways to fill in the lottery card so that exactly 3 of the 6 chosen numbers are among 
the 6 winning numbers. Help them to find the answer. 

§2. Pascal's triangle 

This section is remarkable for its combination of almost all the ideas explained 
earlier in this chapter, leading us to some very beautiful combinatorial facts. 

To start, let us assume we know all the numbers (~) for some fixed number n. 
Then the second property, 

allows us to calculate easily the numbers (nf) for all k. This idea gives us the 
following construction. 
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Since (g) = 1, we write 1 in the center of the first line on a sheet of paper. In 
the next line we write the numbers @ = 1 and GJ = 1 in such a way that 1 = (g) 
is over the gap between these numbers (see Figure 7 4). 

1 

1 

FIGURE 74 

The numbers @ and @ are also l. We write them in the next line (see Figure 
75) with (~),which, by the second property, equals (~) + GJ written between them 
(see Figure 76). 

1 

1 1 

1 1 

FIGURE 75 

Thus, number (D equals the sum of the two numbers in the previous row, standing 
to the left and to the right of it. 

1 1 

2 

FIGURE 76 

Using the same rule, we will fill all the following lines: first, we write the numbers 
(~) and (~) on the sides (they are alweys equal to 1), and then we write the sum 
of any two adjacent numbers of the previous row in a position between them in the 
next row. 

Finally, we have the numerical triangle shown in Figure 77. It is called Pascal's 
triangle. 

By construction, the number (~) occupies the (k + l)st place in the (n + l)st 
row of this triangle. Therefore, it is more convenient to number the rows, and the 
places in the rows, starting from zero. Then we will have the number (~) occupying 
the kth place in the nth row. 
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2 

3 3 

4 6 4 

5 10 10 5 

FIGURE 77 

For teachers. Before going further, students should know the connection 
between the numbers (~) and Pascal's triangle. The best exercise for this is direct 
calculation of numbers of combinations using the triangle-based procedure described 
above. 

Now let us begin the investigation of properties of Pascal's triangle. Evaluate 
the sum of the numbers in its first few rows: 1, 2, 4, 8, 16. You may come to 
the very natural conjecture that the sum of the nth row is 2n. We prove this by 
induction on n (see the chapter "Induction"). The base is already proved. To 
prove the inductive step, notice that each number of a row is taken as a summand 
in forming two adjacent numbers in the next row. Thus the sum of the numbers 
in the next row is exactly twice the sum of the numbers in the given row. This 
completes the inductive step. 

It may also be proved that in every row of Pascal's triangle (except for the 
zeroth) the sum of the numbers in the even places equals the sum of numbers in 
the odd places. 

Rewriting the proposition about the· sum of the numbers in a row of Pascal's 
triangle, we get the following remarkable combinatorial identity: 

Here is a combinatorial proof. From the combinatorial point of view the identity 
states that the number of teams which can be chosen from n students equals 2n if 
the cardinality of the team is arbitrary (using set theoretic language: the number 
of subsets of an n-element set equals 2n). 

We number all the students from 1 through n in an arbitrary order. Then for 
each possible team we construct a sequence of O's and l's in the following way: the 
first element of the sequence is 1 if the first student is on the team, and 0 otherwise. 
In the same way we define the second element of the sequence, the third, and so on. 
It is evident that different teams correspond to different sequences and vice versa. 
Thus the number of all teams is equal to the number of all sequences of O's and 
l's with n elements. Each element of such a sequence can be equal to either 0 or 
1-that is, it can be chosen in two ways. Thus, the number of all such sequences 
equals 2 x 2 x ... x 2 = 2n. 
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Methodological remark. The most important place in this reasoning was the 
construction of a correspondence between teams and sequences of O's and l's. Such 
a reformulation is often very helpful in the solution of many other combinatorial 
problems. As examples we submit here two more problems. 

Problem 22. A person has 10 friends. Over several days he invites some of them 
to a dinner party so that the company never repeats (he may, for example, invite 
nobody on one of the days). For how many days can he follow this rule? 

Problem 23. There are 7 steps in a flight of stairs (not counting the top and 
bottom of the flight). When going down, you can jump over some steps, perhaps 
even over all 7. How many ways are there to go down the stairs? 

Before investigating the next property of Pascal's triangle, we analyze one prob­
lem which is remarkable in that the numbers (~) arise unexpectedly in the course 
of its solution. 

Problem 24. The map of a town is depicted in Figure 78. All its streets are 
one-way, so that you can drive only "east" or "north". How many different ways 
are there to reach point B starting from A? 

A 

FIGURE 78 

Solution. Let us call any segment of the grid connecting two neighboring nodes 
a "street". It is clear that each route from A to B consists of exactly 13 streets, 
8 of which are horizontal and 5 are vertical. Given any route, we will construct a 
sequence of the letters N and E in the following way: when we drive "north", we 
add the letter N to the sequence, and when we drive "east", we add the letter E 
to the sequence. For instance, the route in Figure 78 corresponds to the sequence 
ENNEEENEENNEE. Each sequence constructed in this way contains 13 letters-8 
letters E and 5 letters N. It remains to calculate the number of such sequences. Any 
sequence is uniquely determined by the list of the 5 places occupied by the letters 
N (or, alternatively, of the 8 places occupied by the letters E). Five places out of 
13 can be chosen in (1,;3} ways. Thus the number of sequences, and, therefore, the 
number of routes, equals (1:;3). 

The same reasoning for am x n rectangle gives us the result (m,;t;n) or, equiv­
alently, (m~n). 

Returning to Pascal's triangle, let us change its numbers to points (nodes) as 
shown in Figure 79. Let us write 1 next to the uppermost point S of the triangle, 
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FIGURE 79 

FIGURE 80 

and, then, next to any other node-the number of ways one can reach this node 
from S, moving only downward. You can see (Figure 80) that we have Pascal's 
triangle again. 

One proof of this fact is similar to the solution of the previous problem. How­
ever, here, as in the proof of the fact that the sum of the numbers in each row is 
a power of two, we can proceed hy induction. Indeed, you can reach the kth node 
of the nth row only via either the (k - l)st node of the (n - l)st row or the kth 
node of the (n - l)st row (Figure 81). Thus, to find the required number of ways 
we must simply add the number of ways going to those two nodes of the previous 
row. Hence, using the assumption, the number of ways of going from S to the kth 
node of the nth row is (~=D + (n;;') = (~). 

Methodological remark. Both properties of Pascal's triangle described above 
were proved in two ways-using "geometric" ideas and via direct combinatorial rea­
soning. It is useful to utilize both these approaches while solving various problems, 
especially combinatorial identities. 

Some other properties of Pascal's triangle are given below as problems to be 
solved. They can be stated in terms of the triangle itself, or as combinatorial 
identities. 
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FIGURE 81 

Problem 25. Prove that one can choose evenly many objects from a collection of 
n objects in 2n-l ways. 

Problem 26. Prove that 

(~)-(~) + ... +(-l)n(~) =0. 

For convenience, we introduce now the following definitions. We will call rays 
parallel to sides of Pascal's triangle its diagonals. More precisely, rays parallel to 
the right side are called right diagonals (one of them is selected in Figure 82), and 
those parallel to the left side are left diagonals (see Figure 83). 

FIGURE 82 

Problem 27. Prove that each number a in Pascal's triangle is equal to the sum 
of the numbers in the previous right diagonal, starting from its leftmost number 
through the number which is located in the same left diagonal as a (see Figure 84). 

Problem 28. Prove that each number a in Pascal's triangle is equal to the sum 
of the numbers in the previous left diagonal, starting from the rightmost number 
through the number which is located in the same right diagonal as a (see Figure 
85). 
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FIGURE 83 

FIGURE 84 

FIGURE 85 

Problem 29. Prove that each number a in Pascal's triangle decreased by 1 is 
equal to the sum of the numbers within a parallelogram bounded by the sides of 
the triangle and diagonals going through a (the numbers on the diagonals are not 
included; see Figure 86). 

Problem 30! Prove that 
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FIGURE 86 

§3. Balls and walls 

Let us begin with a discussion of two interesting problems. Each of these can 
be solved by direct, though technically complex, calculation (try this way, too, but 
later). On the other hand, simply restating the question allows us to reach the 
answer (which in each case is a number of combinations), rather easily. 
Problem 31. Six boxes are numbered 1 through 6. How many ways are there to 
put 20 identical balls into these boxes so that none of them is empty? 
Solution. Let us arrange the balls in a row. To determine the distribution of the 
balls in the boxes we must partition this row into six groups of balls using five walls: 
the first group for the first box, the second group for the second box, et cetera (see 
Figure 87). Thus, the number of ways to distribute our balls in the boxes equals 
the number of ways to put five walls into gaps between the balls in the row. Any 
wall can be in any of 19 gaps (there are 19 = 20 - 1 gaps between 20 balls), and 
no two of them can be in the same gap (this would mean that one of the groups is 
empty). Therefore, the number of all possible partitions is (';). 

FIGURE 87 

Exercise. How many ways are there to distribute n identical balls in m numbered 
boxes so that none of the boxes is empty? 
Problem 32. Six boxes are numbered 1 through 6. How many ways are there to 
distribute 20 identical balls between the boxes (this time some of the boxes can be 
empty)? 
Solution. Consider a row of 25 objects: 20 identical balls and 5 identical walls, 
which are arranged in an arbitrary order. Any such row corresponds without am­
biguity to some partition of balls: balls located to the left of the first wall, go to 
the first box; balls between the first and the second wall go to the second box, et 
cetera (perhaps, some pair of walls are adjacent in the row, resulting in an empty 
box). Therefore, the number of partitions is equal to the number of all possible 



ll8 MATHEMATICAL CIRCLES (RUSSIAN EXPERIENCE) 

rows of 20 balls and 5 walls; that is, to ('s") (the row is completely determined by 
the 5 places occupied by the walls). 

We should note that another solution to Problem 31 can be obtained as follows: 
put one ball in each box (to prevent empty boxes), then use the result of Problem 
32 (with 14 balls instead of 20). 

The ideas found during the process of solving the two previous problems show 
us how to solve the next, rather complicated, problem very neatly. 

Problem 33. How many ways are there to represent the natural number n as a 
sum of 

a) k natural numbers? 
b) k non-negative integers? 

Representations that differ in the order of the summands are different. 

Hint. Represent n as the sum of n ones: n = 1 + 1 + ... + 1. Call these n ones 
"balls", and call the k summands from the statement "boxes". The answers are: 
al (~::D; bl (n+~- 1). 

Methodological remark. The solutions just explained show us again how 
important a good reformulation of the statement of a problem can be. The reason 
for such a thorough discussion of the question of the distribution of balls in boxes 
is that similar reformulations (devising "walls", et cetera) are very useful in solving 
many quite different problems, not only in combinatorics, but in other fields of 
mathematics and, generally, science. 

Problem 34. In how many ways can 12 pennies be put into five different purses 
so that none of them is empty? 

Problem 35. A bookbinder must bind 12 identical books using red, green, or blue 
covers. In how many ways can he do this? 

Problem 36. How many ways are there to cut a necklace (in the form of an 
unbroken circle) with 30 pearls into 8 parts (it is permitted to cut only between 
pearls)? 

Problem 37. Thirty people vote for 5 candidates. How many possible distributions 
of their votes are there, if each of them votes for one candidate, and we consider 
only the numbers of votes given to each of the candidates? 

Problem 38. There are 10 types of postcards in a post office. How many ways 
are there to buy 

a) 12 postcards? 
b) 8 postcards? 

Problem 39. A train with m passengers must make n stops. 
a) How many ways are there for passengers to get off the train at the stops? 
b) Answer the same ·question if we take into account only the number of pas­

sengers who get off at each stop. 

Problem 40. In a purse, there are 20 pennies, 20 nickels, and 20 dimes. How 
many ways are there to choose 20 coins out of these 60? 

Problem 41. How many ways are there to put seven white and two black billiard 
balls in nine pockets? Some of the pockets may reniain empty and the pockets are 
considered distinguishable. 
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Problem 42. In how many ways can three people divide among themselves six 
identical apples, one orange, one plum, and one tangerine (without cutting any 
fruit)? 

Problem 43. How many ways are there to put four black, four white, and four 
blue balls into six different boxes? 

Problem 44. A community with n members chooses its representative by voting. 
a) In how many ways can "open" voting result, if everybody votes for one person 

(perhaps for himself/herself)? Open voting means that we take into account not 
only the numbers of votes, but also who votes for whom. 

b) Answer the same question, if voting is not open (and the result consists only 
of the numbers of votes given to each of the members of the community). 

Problem 45. How many ways are there to arrange five red, five blue, and five 
green balls in a row so that no two blue balls lie next to each other? 

Problem 46! How many ways are there to represent the number 1000000 as the 
product of three factors, if we consider products that differ in the order of factors 
as different? 

Problem 47! There are 12 books on a shelf. How many ways are there to choose 
five of them so that no two of the chosen books stand next to each other? 

§4! Newton's binomial theorem 

For teachers. This section is marked with an asterisk because it is rather 
difficult for students of the middle grades. However, we have decided not to omit 
it, since its contents are closely related to the numbers (Z) and Pascal's triangle. 
It is also beyond any doubt that the binomial theorem is an indispensable element 
of mathematical education, although, its study can be postponed. 

Remark. This topic is related to, but distinct from, combinatorics. However, it is 
relevant to give the statement and proof of the main theorem here, since it is used 
in combinatorics quite often and the proof itself is based on combinatorial ideas. 

Everyone knows the identity: 

(a+b) 2 =a2 +2ab+b2 • 

We will try to derive a formula for raising the binomial (a+ b) to an arbitrary 
positive integer power. Let us write a few successive powers of the binomial: 

(a+b)0 = 
(a+b) 1 = 
(a+b) 2 = 
(a+b)3= a3 

a2 

+ 

a + 
+ 2ab 

3a2b + 
+ 

3ab2 

b2 
+ b3 

It is obvious that the coefficients in the right parts of these identities form the 
corresponding rows of Pascal's triangle. We may suggest that the following identity 
holds true: 
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This is indeed true and this expansion is called Newton's binomial theorem. To 
prove it, we expand the product 

(a+W = (a+b)(a+b)(a+b) ... (a+b)(a+b) 

without grouping similar terms together and without changing the order of factors 
in each monomial. For example, 

(a+ b)(g + Q)(a +ii) 
=~+~+•+~+~+W+•+~. 

Let us find the coefficient of the term an-kbk after reducing similar terms. It is 
clear that this coefficient equals the number of monomials which include b exactly 
k times (and include a exactly n - k times). This number is equal to (~), since this 
is the number of ways to choose k places for the letters b. 

Exercise. Prove the binomial theorem by induction. 

§5. Additional problems 

For teachers. This section is auxiliary and optional: it does not contain 
substantial new material but is just a list of problems. By including this section 
in the chapter we pursue two goals. First, we enlarge the supply of problems 
for classes. Second, after learning basic combinatorial ideas, it is useful to keep 
reviewing them from time to time. These reviews can be organized as separate 
sessions or mathematical olympiads, "math battles", et cetera. The problems below 
can be used for such a review session or contest. 

Problem 48. How many necklaces can be made using 5 identical red beans and 2 
identical blue beans? (See Figure 88.) 

FIGURE 88 

Problem 49. a) There are 30 members in a sports club, and the club's coach must 
choose 4 men for a 1000 meter run. How many ways are there to do that? 

b) How many ways are there to choose a team of 4 members for the lOOm + 
200m + 300m + 400m relay? 

Problem 50. How many six-letter ''words" contain at least one letter A (if any 
sequence of letters is counted as a word)? 
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Problem 51. How many ways are there to draw a closed broken path made up of 
line segments with vertices coinciding with the vertices of a regular hexagon (the 
segments of the path are allowed to intersect each other)? 

Problem 52. How many different four-digit numbers divisible by 4 can be written 
using the digits 1, 2, 3, and 4 

a) if each digit can be used only once? 
b) if each digit can be used any number of times? 

Problem 53. A father has 2 apples and 3 pears. Each weekday (Monday through 
Friday) he gives one of the fruits to his daughter. In how many ways can this be 
done? 

Problem 54. A theater group consists of 20 actors. How many ways are there to 
choose two groups of 6 actors each for the two performances of a play, so that none 
of the actors takes part in both performances? 

Problem 55. Find the sum of all three-digit numbers that can be written using 
the digits 1, 2, 3, 4 (repetitions allowed). 

Problem 56. How many ways are there to choose 6 cards from a complete deck 
of 52 cards in such a way that all four suits will be present? 

Problem 57. How many ways are there to put three one dollar bills and ten 
quarters into 4 different boxes? 

Problem 58. Find the number of integers from 0 through 999999 that have no 
two equal neighboring digits in their decimal representation. 

Problem 59. How many ways are there to divide a deck of 36 cards, including 4 
aces, into halves so that each half contains exactly 2 aces? 

Problem 60. A rook stands on the leftmost box of a 1 x 30 strip of squares and 
can shift any number of boxes to the right in one move. 

a) How many ways are there for the rook to reach the rightmost box? 
b) How many ways are there to reach the rightmost box in exactly 7 moves? 

Problem 61. Each side of a boat must be occupied by exactly 4 rowers. How 
many ways are there to choose a rowing team for the boat if we have 31 candidates, 
ten of whom want to be on the left side of the boat, twelve on the right side, and 
the other nine can sit on either side? 

Problem 62: Within a table of m rows and n columns a box is marked at the 
intersection of the pth row and the qth column. How many of the rectangles formed 
by the boxes of the table contain the marked box? 

Problem 63: A 10 x 10 x 10 cube is formed of small unit cubes. A grasshopper 
sits in the center 0 of one of the corner cubes. At a given moment it can jump 
to the center of any of the cubes which has a common face with the cube where it 
sits, as long as the jump increases the distance between point 0 and the current 
position of the grasshopper. How many ways are there for the grasshopper to reach 
the unit cube at the opposite corner? 





CHAPTER 12 

Invariants 

§1. Introduction 

Teacher: "Let us do an experiment. As you see, there are 11 numbers on the 
blackboard-six zeros and five ones. You have to perform the following operation 
10 times: cross out any two numbers. If they were equal, write another zero on the 
blackboard. If they were not equal, write a one. Do it in your notebooks in any 
order you wish. Done? Now I will tell you which number you have. Your result 
must be . . . one!" 

This short performance brings up a natural question: how did the teacher know 
which number the students would have at the end of the process described? Indeed, 
the operations could be performed in a number of different ways, but one thing is 
always the same: after each operation the sum of the numbers on the blackboard 
(or in the notebook) is always odd. This is quite easy to check, since this sum 
can increase or decrease only by 0 or 2. The original sum was odd, so, after 10 
operations the only number remaining must be odd as well. Explaining this, one 
probably cannot help saying the magic word "invariant". 

So, what is an "invariant"? Naturally, it is something that is invariant, that 
doesn't change-like the parity of the sum of the numbers in the last example. 

Another example of an invariant: 
Problem 1. There are only two letters in the alphabet of the Ao-Ao language: 
A and 0. Moreover, the language satisfies the following conditions: if you delete 
two neighboring letters AO from any word, then you will get a word with the 
same meaning. Similarly, the meaning of a word will not change if you insert the 
combinations OA or AAOO any place in a word. Can we be sure that words AOO 
and OAA have the same meaning? 
Solution. Note that for any permitted deletion or insertion of some combination 
of letters, the number of A's in the combination equals the number of O's. This 
means that the difference between the number of A's and the number of O's is 
invariant. Look at the example 

0 --> OOA __, OAAOOOA __, OAOOA. 
In all these words the number of O's exceeds the number of A's by 1. Let us 

go back to the solution. The difference for the word AOO is (-1), and for the 
word OAA it is 1. Therefore, we cannot obtain the word OAA from the word 
AOO by using the permitted operations, and we cannot claim that these words are 
synonyms. 

This solution illustrates the main idea of an invariant. We are given some 
objects, and are permitted to perform some operations on these objects. Then we 
are asked: is it possible to obtain one object from another using these operations? 

123 
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To answer the question we construct a quantity that doesn't change under the 
given operations; in other words, it is invariant. If the values of this quantity are 
not equal for the two objects in question, then the answer is negative-we cannot 
obtain one object from another. 

Let us investigate another problem: 

Problem 2. A circle is divided into 6 sectors (see Figure 89), and a pawn stands 
in each of them. It is allowed to shift any two pawns to sectors bordering those 
they stand on at the moment. Is it possible to gather all pawns in one sector using 
such operations? 

FIGURE 89 

Solution. We number the sectors clockwise with the numbers 1 through 6 (see 
Figure 90) and for any arrangement of pawns inside the circle we consider the sum 
S of the numbers of the sectors occupied by pawns (counting multiplicities). 

1 2 

6 3 

5 4 

FIGURE 90 
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FIGURE 91 
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Example. For the arrangement in Figure 91 we have S = 2+2+4+4+5+6 = 23. 
When you shift a pawn to a neighboring sector, the corresponding summand 

in sum S changes its parity (from odd to even, or from even to odd). Therefore, if 
we shift two pawns simultaneously, then the parity of S doesn't change at all-it is 
invariant. But for the arrangement in Figure 89 the value of S equals 21. If all the 
pawns are in one sector numbered A, then S = 6A. This is an even number, and 21 
is odd. Thus, you cannot transform the initial arrangement into an arrangement 
with all the pawns in one sector. 

Sometimes an invariant can be applied not to prove that some object cannot 
be obtained from a given one, but to learn which objects can be obtained from the 
given one. This is illustrated by the following problem. 

Problem 3. The numbers 1, 2, 3, ... , 19, 20 are written on a blackboard. It is 
allowed to erase any two numbers a and b and write the new number a + b - 1. 
What number will be on the blackboard after 19 such operations? 

Solution. For any collection of n numbers on the blackboard we consider the 
following quantity X: the sum of all the numbers decreased by n. Assume that 
we have transformed the collection as described in the statement. How would the 
quantity X change? If the sum of all the numbers except a and b equals S, then 
before the transformation X = S + a + b - n, and after the transformation X = 
S+(a+b-1)-(n-l) = S+a+b-n. So the value of Xis the same: it is invariant. 
Initially (for the collection in the statement) we have X = (1+2+ ... +19+20)-20 = 
190. Therefore, after 19 operations, when there will be only one number on the 
blackboard, X will be equal to 190. This means that the last number, which is 
X + 1, is 191. 

For teachers. If you hear the solution to this problem from one of your students, 
it will probably sound like this: at each step the sum of all the numbers decreases 
by 1. There are 19 steps, and originally, the sum is 210. Therefore, in the end the 
sum equals 210 - 19 = 191. 

This is a correct solution; however, you should explain that this problem is 
an "invariant" problem. The point is that in this case the invariant is so simple 
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that it can be interpreted quite trivially. The next problem, though it is similar to 
Problem 3, does not allow for such a "simplification". 

Problem 4. The numbers 1, 2, ... , 20 are written on a blackboard. It is permitted 
to erase any two numbers a and b and write the new number ab + a + b. Which 
number can be on the blackboard after 19 such operations? 

Hint. Consider as an invariant the quantity obtained by increasing each number 
by 1 and multiplying the results. 

Here are a few more remarkable problems using the method of invariants. 

Problem 5. There are six sparrows sitting on six trees, one sparrow on each tree. 
The trees stand in a row, with 10 meters between any two neighboring trees. If a 
sparrow flies from one tree to another, then at the same time some other sparrow 
flies from some tree to another the same distance away, but in the opposite direction. 
Is it possible for all the sparrows to gather on one tree? What if there are seven 
trees· and seven sparrows? 

Problem 6. In an 8 x 8 table one of the boxes is colored black and all the others 
are white. Prove that one cannot make all the boxes white by recoloring the rows 
and columns. "Recoloring" is the operation of changing the color of all the boxes 
in a row or in a column. 

Problem 7. Solve the same problem for a 3 x 3 table (see Figure 92) if initially 
there is only one black box in a corner of the table. 

FIGURE 92 

Problem 8. Solve the same problem for an 8 x 8 table if initially all four corner 
boxes are black and all the others are white. 

Notice that Problem 6, unlike Problems 7 and 8, can be solved using only the 
idea of parity (of the nuinber of black boxes). 

Problem 9. The numbers 1, 2, 3, ... , 1989 are written on a blackboard. It is 
permitted to erase any two of them and replace them with their difference. Can this 
operation be used to obtain a situation where all the numbers on the blackboard 
are zeros? 

Problem 10. There are 13 gray, 15 brown, and 17 red chameleons on Chromatic 
Island. When two chameleons of different colors meet they both change their color 
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to the third one (for instance, gray and brown both become red). Is it possible that 
after some time all the chameleons on the island are the same color? 

Let us analyze the solution to Problem 10. How can we express the "numerical" 
meaning of the transformation? One way is to say that two chameleons of different 
colors "vanish" and two chameleons of the third color "appear" . If we want to 
use a numerical invariant, we can easily think of a quantity depending only on 
the numbers (a, b, c), where a, b, and care the numbers of gray, brown, and red 
chameleons respectively. The operation described means that the triple (a, b, c) 
turns into the triple (a-1, b- l, c+2) or the triple (a-1, b+2, c-1) or the triple 
(a+ 2, b - l, c-1 )-depending on the initial color of the two chameleons that meet. 
It is clear that the differences between corresponding numbers in the old and new 
triples either do not change or change by 3, which means that the remainders of 
these differences when divided by 3 are invariant. Originally, a - b = 13-15 = -2, 
and if all the chameleons are red, we get a - b = 0 - 0 = 0. The numbers 0 and -2 
give different remainders when divided by 3, which proves that all the chameleons 
cannot be red. The cases when all the chameleons are gray or brown are proved in 
just the same way. 

For teachers. If the theme "Parity" has already been investigated and you 
analyzed solutions where parity played the role of an invariant, remind your students 
of this. 

The theme "Invariants" is of rather an abstract character and even its very 
principle often remains vague and complicated for students. Thus one must pay 
special attention to the analysis of the logic of applying invariants in solving prob­
lems. It is especially important to analyze the simplest problems of the topic so 
that each student solves at least one problem independently. Thy to illustrate the 
solutions by various examples, making the explanation as graphic and evident as 
possible. As always, introduce the new word "invariants" and the entire philosophy 
of invariant only after students have solved or at least investigated a few of the 
simplest problems using invariants. 

Clearly, the main difficulty in solving problems using invariants is to invent the 
invariant quantity itself. This is a real art, which can be mastered only through 
the experience of solving similar problems. You should not restrain your fantasy. 
However, do not forget about the following simple rules: 

a) the quantity we come up with must in fact be invariant; 
b) this invariant must give different values for two objects given in the statement 

of a problem; 
c) we must begin by determining the class of objects for which the quantity 

will be defined. 

Here is another important example. 

Problem 11. The numbers +l and -1 are positioned at the vertices of a regular 
12-gon so that all but one of the vertices are occupied by + 1. It is permitted to 
change the sign of the numbers in any k successive vertices of the 12-gon. Is it 
possible to "shift" the only -1 to the adjacent vertex, if 

a) k =3; 
b) k=4; 
c) k = 6? 
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Sketch of solution. The answer is negative in all three cases. The proof for all 
of them follows the same general scheme: we select some subset of vertices which 
satisfies the condition that there are evenly many selected vertices among any k 
successive ones (see Figure 93). 

FIGURE 93 

Check that this condition is true for the subsets shown in the figure. 
Fbr our invariant we take the product of the numbers on the selected vertices. 

Initially, it equals -1, but if the -1 has been "shifted" to the left adjacent vertex 
which is not among those selected, it is 1. Finally, the property of invariance for 
the quantity introduced follows from the property of the subset of selected vertices 
indicated above. 

For teachers. This solution gives us a common idea in the method of invariants­
to select some part of each object in which the changes caused by the permitted 
transformations can easily be described. 

Comment. This idea also helps us to solve Problems 7 and 9. 
By the way, you can ask your students one "tricky" question: We have proved 

that the -1 cannot be shifted to the left adjacent vertex. But can it be shifted to 
the right adjacent vertex? 

§2. Colorings 

Many problems involving invariants can be solved using one particular type of 
invariant: a so-called "coloring". The following is a standard example: 

Problem 12. A special chess piece called a "camel" moves along a 10 x 10 board 
like a (1, 3)-knight. That is, it moves to any adjacent square and then moves three 
squares in any perpendicular direction (the usual chess knight's move, for example, 
can be described as of type (1, 2)). Is it possible for a "camel" to go from some 
square to an adjacent square? 

Solution. The answer is no. Consider the standard chess coloring of the board in 
black and white. It is easy to check that a "camel" always moves from a square 
of one color to a square of the same color; in other words, the color of the square 
where the "camel" stands is invariant. Therefore, the answer is negative, since any 
two adjacent squares are always colored differently. 

Here are some other problems using "coloring" methods in their solutions. 
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Problem 13. a) Prove that an 8 x 8 chessboard cannot be covered without over­
lapping by fifteen 1 x 4 polyminos and the single polymino shown in Figure 94. 

FIGURE 94 

b) Prove that a 10 x 10 board cannot be covered without overlapping by the 
polyminos shown in Figure 95. 

FIGURE 95 

c) Prove that a 102 x 102 board cannot be covered without overlapping by 1x4 
polyminos. 

Hint to 13 b). Use the standard chess coloring of the board. 

Problem 14. A rectangular board was covered without overlapping by 1 x 4 and 
2 x 2 polyminos. Then the polyminos were removed from the board, but one 2 x 2 
was lost. Instead, another 1 x 4 polymino was provided. Prove that now the board 
cannot be covered by the polyminos without overlapping. 

Problem 15. Is it possible for a chess knight to pass through all the squares of 
a 4 x N board having visited each square exactly once, and return to the initial 
square? 

Let us analyze the solution to Problem 15. We color the squares of the 4 x N 
board using four colors as shown in Figure 96. Assume that there exists such a 
"knight's tour" . The coloring shown satisfies the condition that if a knight stands 
on a square of color 1 (2, respectively) then at the next move it will be on a square 
of color 3 (4, respectively). 

1 2 1 2 1 2 

3 4 3 4 3 4 

4 3 4 3 4 3 

2 1 2 1 2 1 

FIGURE 96 
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Since the number of 1- and 2-colored squares equals the number of 3- and 4-
colored squares, these pairs of colors alternate during the trip. Thus, each time the 
knight is on a square of color 3, it will go to a square of color 1 or 2 on the next 
move, and it is clear that it can go only to a square of color 1. Thus, colors 1 and 3 
must alternate, which is impossible since in this case the knight would never visit 
the squares of color 2 or 4. This contradiction completes the proof. 

For teachers. 1. A little fantasy will produce new "coloring" problems. We can 
investigate, for instance, some variations of polyminos and boards in Problem 13. 
Remember that a "coloring" method is usually used for proving a negative answer. 

2. A little bit more about the "coloring" method itself: there are mathematical 
problems which can be solved using coloring, though they have nothing to do with 
the idea of invariant (see [3] and [42]). Moreover, some variations of this method can 
be considered as independent topics in a separate small session of a mathematical 
circle. 

§3. Remainders as invariants 

Below are seven more problems using the idea of invariants. They are remark­
able in that the invariant in their solutions is a remainder modulo some natural 
number. This is a very common situation (see Problems 3, 7-9 which concern 
remainders modulo 2 (that is, parity), or Problem 11-modulo 3). 
Problem 16. Prince Ivan has two magic swords. One of these can cut off 21 heads 
of an evil Dragon. Another sword can cut off 4 heads, but after that the Dragon 
grows 1985 new heads. Can Prince Ivan cut off all the heads of the Dragon, if 
originally there were 100 of them? (Remark. If, for instance, the Dragon had 
three heads, then it is impossible to cut them off with either of the swords.) 
Problem 17. In the countries Dillia and Dallia the units of currency are the diller 
and the daller respectively. In Dillia the exchange rate is 10 dallers for 1 diller, and 
in Dallia the exchange rate is 10 dillers for 1 daller. A businessman has 1 diller and 
can travel in both countries, exchanging money free of charge. Prove that unless he 
spends some of his money, he will never have equal amounts of dillers and dallers. 
Problem 18. Dr. Gizmo has invented a coin changing machine which can be used 
in any country in the world. No matter what the system of coinage, the machine 
takes any coin, and, if possible, returns exactly five others with the same total 
value. Prove that no matter how the coinage system works in a given country, you 
can never start with a single coin and end up with 26 coins. 
Problem 19. There are three printing machines. The first accepts a card with 
any two numbers a and b on it and returns a card with the numbers a + 1 and 
b + 1. The second accepts only cards with two even numbers a and b and returns 
a card with the numbers a/2 and b/2 on it. The third accepts two cards with the 
numbers a, b and b, c respectively, and returns a card with the numbers a, c. All 
these machines also retiirn the cards given to them. Is it possible to obtain a card 
with numbers 1, 1988, if we originally have only a card with the numbers 5, 19? 
Problem 20. The number 8n is written on a blackboard. The sum of its digits is 
calculated, then the sum of the digits of the result is calculated and so on, until we 
get a single digit. What is this digit if n = 1989? 
Problem 21. There are Martian amoebae of three types (A, B, and C) in a test 
tube. Two amoebae of any two different types can merge into one amoeba of the 
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third type. After several such merges only one amoeba remains in the test tube. 
What is its type, if initially there were 20 amoebae of type A, 21 amoebae of type 
B, and 22 amoebae of type C? 

Problem 22. A pawn moves across an n x n chessboard so that in one move it 
can shift one square to the right, one square upward, or along a diagonal down and 
left (see Figure 97). Can the pawn go through all the squares on the board, visiting 
each exactly once, and finish its trip on the square to the right of the initial one? 

i 
0 ~ 

/ 

FIGURE 97 

Let us try to simulate the process of solving Problem 19. 

For teachers. It is very effective to present the solution as a short story telling 
how you came to it, how you thought of the invariant, and so on. 

What do we have on the surface?-a few permitted operations are given and 
we are asked whether it is possible to obtain one given object from another. This 
picture definitely pushes us to find an invariant. Let us start the search. 

The first operation maps (a, b) to (a + 1, b + 1). What is invariant under 
this operation? Certainly, the difference between the numbers on the cards, since 
(a+l)-(b+l) = a-b. Butthesecondoperationchangesthedifference: a/2-b/2 = 
(a-b)/2-the difference is divided by two. The third operation adds the differences: 
a - c =(a - b) + (b - c). 

These observations make us think that it is not the difference between the 
numbers on the card which is invariant. However, it is very likely that the difference 
has something to do with this (so far unknown) invariant. So what can it be? Let 
us look more closely and try to obtain some cards from the given one. 

(5, 19) -+ (6, 20) 
(6, 20) --> (3, 10) 
(3, 10) -+ (20, 27) 
(6, 20), (20, 27) -+ (6, 27) 
Enough. Now we can observe the results of our work. We have the following 

cards: (5, 19), (6, 20), (3, 10), (20, 27), (6, 27). The differences for the pairs of 
numbers on the cards are: 14, 14, 7, 7, 21. Finally, we know what we must prove! 
The most plausible conjecture is that our difference a - bis always divisible by 7. 
This fact can be proved quite easily. We need only consider the behavior of the 
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difference under the operations permitted. It either does not change at all, or is 
multiplied by ! , or two differences add up to give another one. But the difference 
for the card we want to obtain-(1, 1988)-equals 1 - 1988 = -1987 and is not 
divisible by 7. This completes the solution, and the answer is negative. 

The problems from this set are more difficult than most of Problems 1-23, but 
they can serve as good exercises for homework and further investigation. 

Problem 23. The boxes of an m x n table are filled with numbers so that the sum 
of the numbers in each row and in each column is equal to 1. Prove that m = n. 

Remark. Strange as it may seem, this is an "invariant" problem. 

Problem 24. There are 7 glasses on a table-all standing upside down. It is 
allowed to turn over any 4 of them in one move. Is it possible to reach a situation 
when all the glasses stand right side up? 

Problem 25. Seven zeros and one 1 are positioned on the vertices of a cube. It is 
allowed to add one to the numbers at the endpoints of any edge of the cube. Is it 
possible to make all the numbers equal? Or make all the numbers divisible by 3? 

Problem 26. A circle is divided into six sectors and the six numbers 1, 0, 1, 0, 
0, 0 are written clockwise, one in each sector. It is permitted to add one to the 
numbers in any two adjacent sectors. Is it possible to make all the numbers equal? 

Problem 27. In the situation of Problem 20, find out which cards can be obtained 
from the card (5, 19) and which cards cannot. 

Problem 28. There is a heap of 1001 stones on a table. You are allowed to perform 
the following operation: you choose one of the heaps containing more than 1 stone, 
throw away one stone from that heap and divide it into two smaller (not necessarily 
equal) heaps. Is it possible to reach a situation in which all the heaps on the table 
contain exactly 3 stones? 

Problem 29. The numbers 1, 2, 3, ... , n are written in a row. It is permitted to 
transpose any two neighboring numbers. If 1989 such operations are performed, is 
it possible that the final arrangement of numbers coincides with the original? 

Problem 30. A trio of numbers is given. It is permitted to perform the following 
operation on the trio: to change two of them-say, a and 1>-to (a + b) / ,/2 and 
(a-b)/,/2. Is it possible to obtain the trio (1, ,/2, 1 +,/2) from the trio (2, ,/2, 1/,/2), 
using such operations? 

For teachers. 1. "Invariant" problems are very popular; for example, at least 
two or three problems in each St. Petersburg All-City Mathematical Olympiad can 
be solved using the idea of an invariant. 

2. The idea of an invariant is widespread and permeates different fields of 
science. If your students are familiar with the basics of physics, then you can 
analyze as examples some corollaries of the law of conservation of energy, or the 
theorem of the conservation of momentum, et cetera. 

3. Students must understand that if some invariant (or even several invariants) 
give the same values for two given objects, then it does not mean that the objects 
can be obtained from each other by the described operations. This is a standard 
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mistake which arises after the first" acquaintance with invariants. Give your students 
some simple examples refuting this error. 

4. Once more we recall the simplest and most standard invariants: 
1) remainder modulo some natural number-Problems 3, 7-11, 17-22; 
2) selecting a part of an object-Problems 7, 9, 12; 
3) coloring-Problems 13-16; 
4) some algebraic expression involving given variables-Problems 4, 26, 30. 





CHAPTER 13 

Graphs-2 

This chapter continues the investigation of graphs begun in the first part of the 
present book. Why should we return to this topic? First, graphs are interesting 
and fruitful objects of study. Second, and most important, elementary reasoning 
about graphs allows us to get closer to more serious mathematics (this refers mostly 
to §§1 and 3 of the present chapter). 

§1. Isomorphism 

As we mentioned before, the same graph can be depicted in a number of ways. 
For instance, the same acquaintance scheme or system of airline routes may be 
pictured as figures which do not even resemble each other. Consider the following 
example: during a tournament involving five teams A, B, C, D, and E, team A 
played teams B, D, and E. In addition, team C played teams Band D, while D also 
played E. It is clear that both drawings in Figure 98 represent this situation. 

A 

B c 

FIGURE 98 

Now we give an exact definition. 

Definition. Two graphs are called isomorphic if they have equally many vertices 
(say n) and the vertices of each graph can be numbered 1 through n in such a 
way that vertices of the first graph are connected by an edge if and only if the two 
vertices having the same numbers in the second graph are connected by an edge. 

Now we can pay our debt and prove that the graphs shown in Figure 99 (which 
are copies of those in the chapter "Graphs-1") are not isomorphic. 

135 
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FIGURE 99 

The point is that these graphs have different numbers of connected components: 
the first graph has three and the second has two. 

We now show that isomorphic graphs must have equal numbers of connected 
components. It suffices to see that if two vertices of the first graph belong to one 
connected component, then they are connected by some path, which implies that 
the two corresponding vertices of the second graph are connected by some path as 
well and, therefore, also belong to one connected component. 

Problem 1. Are the graphs in the pairs shown in Figure 100 isomorphic? 

o.,~ 
c) 

I) 

5 CD 
g) 

FIGURE 100 
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FIGURE 101 
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4 3 3 4 

FIGURE 102 

Solution. Figures 101 and 102 show that the graphs in the pairs labelled a) and 
b) are isomorphic. The graphs in the other pairs are not isomorphic. 

Hints. c) The numbers of vertices are not equal. d) The numbers of edges are not 
equal. e) The numbers of connected components are not equal. f) The first graph 
has a vertex with four outgoing edges, but there is no such vertex in the second 
graph. g) There is an edge in the first graph such that after deleting this edge the 
graph will fall into two connected components. However, the second graph does 
not contain such an edge. This can be proved in another way: we consider closed 
paths which do not pass twice through any vertex. The first graph has two such 
closed paths: of length* 3 and of length 4. The second graph has three such paths: 
their lengths are 4, 5, and 7. 

For teachers. Intuitively, students understand quite well when graphs are 
"identical". Thus it is interesting to listen to their own independent attempts to 
give a precise definition of isomorphism. Sometimes these "definitions" may involve 
something like "graphs are isomorphic (identical) if they have equal numbers of 
vertices and edges". Finding solutions to the different parts of Problem 1 can also 
lead to a very interesting discussion about various criteria for non-isomorphism. 

One important concept was incidentally mentioned in the solution to Problem 
1. Now we will give it a more accurate definition. 

*The length of a path is the number of edges it consists of. 
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Definition. A cycle is any closed path in a graph which does not pass through the 
same vertex of the graph twice. 

In discussing item g), we noticed that the graph shown in Figure 103 (a) had 
two cycles: 1-2-3-4-1 and 5-6-7-5, while the graph shown in Figure 103 (b) had 
three cycles: 1-5-6-7-1, 1-2-3-4-5-1, and 1-2-3-4-5-6-7-1. 

1 
6 

7 2 
5 

7 
3 

3 4 
6 

2 1 
(a) 5 (b) 

FIGURE 103 

Here are two more problems connected with these concepts and definitions. 

Problem 2. Prove that there does not exist a graph with 5 vertices with degrees 
equal to 4, 4, 4, 4, and 2. 

Problem 3. Prove that there exists a graph with 2n vertices with degrees 1, 1, 2, 
2, ... , n, and n. 
Problem 4. Is it true that two graphs must be isomorphic, if 

a) they both have 10 vertices and the degree of each equals 9? 
b) they both have 8 vertices and the degree of each equals 3? 
c) they are both connected, without cycles, and have 6 edges? 

Problem 5. In a connected graph the degrees of four of the vertices equal 3 and 
the degrees of all other vertices equal 4. Prove that we cannot delete one edge in 
such a way that the graph splits into two isomorphic connected components. 

§2. Trees 

In this section we will discuss a certain type of graph which looks quite simple 
but plays an important part in the theory of graphs. 

Definition. A tree is a connected graph without cycles. 

For example, the graphs in Figure 104 are trees, while the graphs in Figures 
105 and 106 are not. 
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(a) 

FIGURE 104 

L 

FIGURE 105 

y~ 

FIGURE 106 

This type of graph was given its name because some of them really do resemble 
trees (see Figure 104 (b)). 

When studying the properties of trees, the concept of a simple path turns out 
to be quite useful. We have already defined the concept of a path in the chapter 
"Graphs-1". A path is called "simple" if it does not include any of its edges more 
than once. 

Problem 6. Prove that a graph in which any two vertices are connected by one 
and only one simple path is a tree. 
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FIGURE 107 

Solution. It is obvious that such a graph is connected. Let us assume that it has 
a cycle. Then any two vertices of this cycle are connected by at least two simple 
paths (see Figure 107). This contradiction proves that our assumption was wrong. 

Now we will prove the converse proposition. 

Problem 7. Prove that in any tree every two vertices are connected by one and 
only one simple path. 

Solution. Assuming otherwise, suppose two vertices X and Y are connected by 
two different simple paths. It seems, at first, that by going from X to Y by the first 
path and then returning by the second path we obtain a cycle. Unfortunately, this 
is not completely true. The problem is that our paths may have common vertices 
(other than their common ends; see Figure 108), and by definition, the vertices of 
a cycle must not repeat. To extract a real cycle from this "improper" one, we must 
do the following: 

1) going from X, choose the first vertex where our paths diverge (this is point 
A in Figure 108), 

2) beyond this chosen vertex we must find, on path number 1, the first point 
that also belongs to path number 2 (vertex Bin Figure 108). 

Now the parts of our cycles between vertices A and B form a cycle. 

For teachers. The first two sentences of this solution contain its basic idea. 
Further technicalities may be a bit too complicated for some students. 

The results of Problems 6 and 7 give another possible definition of a tree, 
equivalent to the first. 

Definition. A tree is a graph in which any two different vertices are connected by 
one and only one simple path. 

In solving the following problems we will use either definition. 

Problem 8. Prove that in any tree having at least one edge there exists a vertex 
which is an endpoint of exactly one edge (such a vertex is called a pendant vertex). 
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Solution. Consider an arbitrary vertex of the tree and move along any edge going 
out of it to another vertex. If this new vertex has degree 1, then we stay there; 
otherwise, we move along any other edge to another vertex and so on. It is clear that 
we cannot come to a vertex we have visited before-this would mean the existence 
of a cycle. On the other hand, since our graph has a finite number of vertices, our 
trip must end somewhere. But the vertex it will end in must be a pendant vertex! 

The statement of Problem 8 is called The Pendant Vertex Lemma. This lemma 
will be used later in other solutions. 

For teachers. Starting with this section, we will formulate our problems either 
in the language of graph theory, or more informally. Our experience shows that we 
should not make excessive use of either of these two forms. First, students must 
understand the formal language. Second, they must learn to see the real meaning of 
the problem behind its informal statement. Thus, it is better to use both languages 
freely, without being obsessed with one of them. 
Problem 9. All the vertices of a graph have degree 3. Prove that the graph has a 
cycle. 

Problem 10. Prove that if an edge (excluding its ends) is deleted from a tree, 
then the resulting graph is not connected. 

Problem 11. There are 101 towns in Forestland. Some of them are connected by 
roads, and each pair of towns is connected by one and only one simple path. How 
many roads are there? 

Solution. Translating the problem into more formal language, we can say that the 
graph of the roads of Forestland is a tree. This tree must have a pendant vertex. 
Let us delete it, together with its edge. The resulting graph is also a tree and so it 
has a pendant vertex, which we also delete, together with its only edge. Performing 
this operation 100 times we finally obtain a tree with one vertex and, of course, 
with no edges. Since we were deleting one edge per operation, we conclude that 
there were 100 edges. 

In just the same way you can prove another, more general fact; 

Theorem. In any tree, the number of vertices exceeds the number of edges by 1. 
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The converse theorem is true as well. 

Problem 12. Prove that a connected graph in which the number of vertices exceeds 
the number of edges by 1 is a tree. 

Problem 13. A volleyball net has the form of a rectangular lattice with dimensions 
50 x 600. What is the maximum number of unit strings you can cut before the net 
falls apart into more than one piece? 

Solution. We consider this volleyball net as a graph, its nodes as vertices, and the 
strings as edges. Our objective is to erase as many edges as possible while keeping 
the graph connected. We delete the edges one by one as long as we can. Notice 
that if the graph has a cycle, then we can delete any of the edges in this cycle. But 
a connected graph without cycles is a tree-thus, when we have obtained a tree, 
we cannot delete any more of the graph's edges! 

Let us calculate the number of edges in our graph at this final moment. The 
number of vertices is the same as originally-that is, it equals 51·601 = 30651. On 
the other hand, a tree with this many vertices must have 30651 - 1 = 30650 edges. 
At the very beginning we had 601·50+600 · 51 = 60650 edges. Thus we can delete 
no more than 30000 edges-and it is easy to see that we actually can do this. 

Methodological remark. We call your attention to the key idea of the 
solution-finding the "maximal" tree within our graph. Certainly, this "maximal" 
tree is not unique (see Figure 109). This method (selecting the "maximal" tree) 
will also help in solving the following three problems. 

FIGURE 109 

Problem 14. There are 30 towns in a country. Each of them is connected to every 
other by a single road. What is the maximum number of roads that can be closed 
in such a way that one can still reach each town from any other? 

Problem 15. Prove that in any connected graph it is possible to delete a vertex, 
with all the edges leaving it, so that the graph remains connected. 

Problem 16! There are 100 towns in a country and some of them are connected 
by airlines. It is known that one can reach every town from any other (perhaps 
with several intermediate stops). Prove that you can fly around the country and 
visit all the towns making no more than 

a) 198 flights; 
b) 196 flights. 
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For teachers. A separate session can be devoted to the concept of a tree 
and problems connected with it. Problems using the idea of a maximal tree can be 
posed one by one after a thorough discussion of the idea. 

§3. Euler's theorem 

In this section we will prove a classical theorem named after the great XVIII 
century mathematician Leonard Euler. In connection with it we also discuss prop­
erties of an important type of graph, whose definition is given on the next line. 

Definition. A graph that can be drawn in such a way that its edges do not intersect 
each other (except at their endpoints) is called planar. 

For instance, the graph shown in Figure 110 is planar (a graph isomorphic to 
it is depicted in Figure 111), while the graph shown in Figure 112 is not (this fa.ct 
will be proved a bit later). 

FIGURE llO 

FIGURE 111 

We will say that a planar graph is properly depicted by a figure if its edges (as 
shown on the figure) do not intersect at their interior points. 
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FIGURE 112 

For teachers. Perhaps you have already noticed that we are not quite accu­
rate in using the concept of a graph-we do not distinguish between different, but 
isomorphic, graphs. This inaccuracy is especially clearly seen in the definition of a 
planar graph. It is important that students understand that a graph may be planar 
even if some of its edges intersect in a given picture (see Figure 110). 

If a graph is depicted properly, then it divides the plane into several regions 
called faces. Let us denote the number of faces by F, the number of the vertices 
by V, and the number of the edges of the graph by E. For the graph in Figure 111 
we have V = 4, E = 6, F = 4 (the outer, infinite, region of the plane is counted as 
a face). 

The following fact is then true. 

Euler's theorem. For a properly depicted connected planar graph the equality 
V - E + F = 2 always holds true. 

Proof. We repeat the reasoning used in the solution to the problem about the 
volleyball net: we delete the edges until we get a tree, keeping the graph connected. 
Look at the behavior of the quantities V, E, and F under such an operation. It 
is evident that the number of vertices does not change, while the number of edges 
decreases by 1. The number of faces also decreases by one: Figure 113 shows 
how two faces adjacent to the deleted edge merge into one new face. Thus the 
quantity V - E + F does not change under this operation (we can say that the 
quantity V - E + F is invariant with respect to this operation-see the chapter 
"Invariants"!). 

Since for the resulting tree we have V -:- E = 1 (by the theorem from the 
previous section) and F ~ 1, for this tree we have V - E + F = 2, and therefore, 
the same equality is true for the original graph. 

The equality V - E + F = 2 is called Euler's formula. 

Euler's theorem is a very strong result and we can derive a lot of beautiful and 
interesting corollaries from it. Let us begin with a simple problem. 
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FIGURE 113 

Problem 17. There are 7 lakes in Lakeland. They are connected by 10 canals 
so that one can swim through the canals from any lake to any other. How many 
islands are there in Lakeland? 

The next problem is more difficult. 

Problem 18. There are 20 points inside a square. They are connected by non­
intersecting segments with each other and with the vertices of the square, in such 
a way that the square is dissected into triangles. How many triangles do we have? 

Solution. We will consider the points and the vertices of the square as the vertices, 
and the segments and the sides of the square as the edges of a planar graph. For 
each region (among those into which the graph divides the plane) we calculate 
the number of edges on its border. Then we add up all these numbers. Since 
any edge separates exactly two different faces from one another, the total must be 
simply double the number of edges. Since all the faces are triangles, except for the 
outer one, which is surrounded by four edges, we get 3(F - 1) + 4 = 2E; that is, 
E = 3(F -1)/2 + 2. Since the number of vertices equals 24, using Euler's formula, 
we have 

24-(3(F2-l) +2) +F=2. 

Thus F = 43 (counting the "outside face"). So, the number of triangles our square 
is divided into is equal to 42. 

Problem 19. Prove that for a planar graph 2E 2:: 3F. 

We continue with some classical corollaries of Euler's theorem. Let us begin 
with an inequality. 

Problem 20. Prove that for a planar connected graph E ~ 3V - 6. 

Solution. The previous problem gives 2E 2:: 3F. Substituting into Euler's formula 
we have V - E + 2E/3 2:: 2. Therefore E ~ 3V - 6, as required. 

Problem 21. Prove that for any planar graph (even if it is not connected) E ~ 
3V-6. 

Hint. The inequality is just the result of summing up the corresponding inequalities 
for each connected component. 

It is remarkable that the last inequality allows us to prove the fact claimed at 
the beginning of this section. 
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Problem 22. The graph with 5 vertices, each of which is connected by an edge to 
every other, is not planar. 

Hint. The inequality E :5 3V - 6 does not hold true. 

A graph in which each vertex is connected by an edge to every other vertex is 
called complete. In Figure 114 you can see the complete graph with 6 vertices. 

FIGURE 114 

The result of Problem 22 means that a complete graph with more than 4 vertices 
is not planar. 
Problem 23. Is it possible to build three houses and three wells, then connect 
each house with each well by nine paths, no two of which intersect except at their 
endpoints? 

Hint. For the graph given in this problem the inequality 2E ~ 3F can be strength­
ened. Indeed, any cycle in this graph must be of even length, since houses and wells 
alternate. Assuming this graph is planar and can be properly drawn, we derive that 
each face in this (presumably) planar representation must have at least 4 edges on 
its border. Thus the same calculation as in the solution to Problem 19 brings us 
to the inequality E ~ 2F. But this inequality does not hold true, so the answer to 
our question is no. 

Problem 24. Prove that if the degree of each of the 10 vertices of a graph is equal 
to 5, then the graph is not planar. 

The inequality E :5 3V - 6 can be used to prove the following three elegant 
facts. 
Problem 25. Prove that in any planar graph there exists a vertex with degree no 
more than 5. 
Problem 26. Each edge of the complete graph with 11 vertices is colored either 
red or blue. We then look at the graph consisting of all the red edges, and the 
graph consisting of all the blue edges. Prove that at least one of these two graphs 
is not planar. 
Problem 27: A heptagon is dissected into convex pentagons and hexagons so that 
each of its vertices belongs to at least two smaller polygons. Prove that the number 
of polygons in the tessellation is no less than 13. 
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For teachers. Our experience shows that the material covered in this section is 
quite important for graph theory. A separate session should probably be devoted 
to this subject. 

§4. Miscellaneous problems 

In this section we have gathered a few problems from various parts of graph 
theory. In solving them, one must combine the methods described in this chap­
ter and in the chapter "Graphs-1" with other significant ideas. Therefore, these 
problems are quite difficult. 

Problem 28. Prove that any connected graph having no more than two "odd" 
vertices (see the chapter "Graphs-1") can be drawn without lifting the pencil off 
the paper and so that each edge is drawn exactly once. 

Sketch of the proof. Assume the graph does not have any "odd" vertices at all. 
We prove the fact by induction on the number of edges. The base (the graph without 
edges) is obvious. To prove the inductive step we consider an arbitrary connected 
graph all of whose vertices are "even". Since this graph has no pendant vertices, 
it cannot be a tree, and thus, it must contain a cycle. Now we can temporarily 
delete all the edges belonging to the cycle. After this, the graph splits into several 
connected components which have common vertices with that "temporarily deleted" 
cycle and satisfy the condition of the theorem (see Figure 115). By the inductive 
assumption each of these components can be drawn in the required way. It is clear 
now how to draw the original graph: we go along the cycle and, coming into a 
vertex belonging to a connected component, we draw the component starting at 
this vertex (and, certainly, finishing at the same vertex, which is important!) then 
continue our movement along the cycle. 

FIGURE 115 
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The proof for the case when our graph contains two vertices with odd degree 
is quite similar-we temporarily delete a path connecting these two vertices and 
apply the same technique. 

A graph which can be drawn without lifting the pencil off the paper, so that 
each edge is drawn exactly once, is called an Euler graph or unicursal. 

In the chapter "Graphs-1" we already proved that an Euler graph cannot have 
more than two "odd" vertices. The last problem allows us to combine all our results 
into one theorem. 

Theorem. A graph is an Euler graph if and only if it is connected and has no 
more than two "odd" vertices. Note that we have already proved the "if" part of 
the theorem. 

Here are three more problems. 

Problem 29. Is it possible to form the grid shown in Figure 116 
a) from 5 broken lines of length 8 each? 
b) from 8 broken lines of length 5 each? (The length of the grid's segments is 

1.) 

FIGURE 116 

Problem 30. There are 100 circles forming a connected figure on the plane. Prove 
that this figure can be drawn without lifting the pencil off the paper or drawing 
any part of any circle twice. 

Problem 31. Prove that a connected graph with 2n "odd" vertices can be drawn 
without drawing any edge more than once and in such a way that the pencil will 
be lifted off the paper exactly n - 1 times. 

Problem 32. There are 50 scientists at a conference and each of them is acquainted 
with at least 25 of the others. Prove that there are four of them who can be seated 
at a round table so that each of them has two acquaintances for neighbors. 
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Problem 33. Eru:h of 102 students in a school is acquainted with at least 68 
other students. Prove that there are four students who have the same number of 
acquaintances. 

Problem 34! Let us call the length of any simple path connecting two vertices in 
a tree the distance between those vertices. Let us call the sum of all the distances 
between the vertex and all the other vertices of the graph the remoteness of a 
vertex. Prove that a tree containing two vertices whose remotenesses differ by 1 
has oddly many vertices. 
Problem 35. Alice drew 7 trees on a blackboard, each having 6 vertices. Prove 
that some pair of them is isomorphic. 
Problem 36. In a certain country any two towns are connected either by an airline 
route or by railroad. Prove that 

a) it is possible to choose one type of transportation so that you can reach eru:h 
town from any other using only the chosen type of transportation; 

b) there is a town and a type of transportation such that you can reach any 
other town from that one with no more than one transfer, using only the chosen 
type of transportation; 

c) any town possesses the property indicated in b); 
d) it is possible to choose a type of transportation so that you can reach each 

town from any other using only the chosen type of transportation and with at most 
two transfers on the way. 
Problem 37. Each of the edges of a complete graph with 6 vertices is colored 
either black or white. Prove that there are three vertices such that all the edges 
connecting them are of the same color. 
Problem 38. Each of the edges of a complete graph with 17 vertices is colored 
either red, blue, or green. Prove that there are three vertices such that all the edges 
connecting them are the same color. 

Problem 39: Each of the edges of a complete graph with 9 vertices is colored 
either blue or red. Prove that either there exist four vertices with all the edges 
connecting them blue, or three vertices with all the edges connecting them red. 

Problem 40: Each of the edges of a complete graph with 10 vertices is colored 
either black or white. Prove that there are four vertices such that all the edges 
connecting them are of the same color. 

For teachers. Euler's theorem is the most important and essential fact in this 
section. It demands very thorough discussion and careful proof. Other problems 
can be used in different ways. The most difficult of them (marked with asterisks) 
are naturally intended for homework. 

§5. Oriented graphs 

The main subject of this section is the so-called oriented graph; that is, a graph 
whose edges are supplied with arrows. We will not prove any fundamental theorems 
about such graphs; however, the concept of an oriented graph is an important 
element of general mathematical culture and these graphs are common objects in 
mathematical problems. 

Problem 41. After coming back from Fibland, Dmitri told his friends that there 
are several lakes connected with rivers. He also told them that three rivers flow 
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out of every lake and four rivers flow into every lake in Fibland. Prove that he was. 
wrong. 

Solution. Every river has two ends (lakes). It flows out of one and into the other. 
Therefore, the sum of the number of rivers "flowing in" must be equal to the sum 
of the number of rivers "flowing out". But if there are n lakes in Fibland then the 
sum of the numbers of rivers "flowing in" is 4n, and the sum of the numbers of 
rivers "flowing out" is 3n. This contradiction completes the proof. 

Problem 42. There is a capital and 100 towns in a country. Some of the towns 
(including the capital) are connected by one-way roads. Exactly 20 roads lead out 
from, and exactly 21 roads lead into, every town other than the capital. Prove that 
it is impossible to drive from any town to the capital and still obey the driving 
regulations. 

In each of the following two problems the reader is requested to place arrows 
on the edges of a non-oriented graph to satisfy some conditions. 

Problem 43. In some country each town is connected with every other town by 
a road. An insane king decided to impose one-way traffic on all the roads so that 
after you drive from any town you cannot return to it. Is this possible? 

Problem 44. Prove that it is possible to place arrows on the edges of an arbitrary 
connected non-oriented graph and choose one vertex in such a way that one can 
reach any vertex from the chosen one. 

The concept of an Euler graph and its main properties are used in Problems 
45 and 46. 

Problem 45. The degrees of all the vertices of a connected graph are even. Prove 
that one can place arrows on the edges of the graph so that the following conditions 
will be satisfied: 

a) it is possible to reach each vertex from any other, going along the arrows; 
b) for each vertex the numbers of "incoming" and "outgoing" edges are equal. 

Problem 46. Arrows are placed on the edges of a connected graph so that for any 
vertex the numbers of "incoming" and "outgoing" edges are equal. Prove that one 
can reach each vertex from any other by moving along the arrows. 

If you are familiar ·with the method of mathematical induction, then you can 
use it in solving the problems from the following set. 

Problem 47. In a certain country each town is connected with every other by a 
one-way road. Prove that there is a town from which you can drive to any other. 

Solution. We proceed by induction on the number of towns. The base of the 
induction is obvious. To prove the inductive step we remove one of the towns. For 
the rest of them, using the inductive step, we can find a town A possessing the 
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required property. Now we replace the removed town B. If there is at least one 
road going to B, then A is the required town for the original problem. If all the 
roads lead from B, then B is the town we need. 

Problem 48. Several teams played a tournament such that each team played every 
other team exactly once. We say that team A is stronger than team B, if either A 
defeated B or there exists some team C such that A defeated C while C defeated 
B. 

a) Prove that there is a team which is stronger than any other team; 
b) Prove that the team which won the tournament is stronger than any other. 

Problem 49. There are 100 towns in a country. Each of them is connected with 
every other town by a one-way road. Prove that it is possible to change the direction 
of traffic on one of the roads such that after this operation each town can still be 
reached from any other. 

Problem 50. Twenty teams played a volleyball tournament in which each team 
played every other team exactly once. Prove that the teams can be numbered 1 
through 20 in such a way that team 1 defeated team 2, team 2 defeated team 3, 
... , team 19 defeated team 20. 

Finally, the last three problems of this section. 

Problem 51. Some pair of teams showed equal results in a volleyball tournament 
in which each team played every other team exactly once. Prove that there are 
teams A, B, and C such that A defeated B, B defeated C, and C defeated A. 

Problem 52. There are 101 towns in a country. 
a) Each town is connected with every other town by a one-way road, and there 

are exactly 50 roads going into and 50 roads leaving each town. Prove that you can 
reach each town from any other, driving along at most two roads. 

b) Some pairs of towns are connected by one-way roads, and there are exactly 
40 roads going into and 40 roads leaving each town. Prove that you can reach each 
town from any other, driving along at most three roads. 

Problem 53: In Orientalia all the roads are one-way roads, and you can reach 
each town from any other by driving along no more than two roads. One of the 
roads is closed for repair, but it is still possible to drive from each town to any 
other. Prove that now this can be done by driving along at most three roads. 





CHAPTER 14 

Geometry 

We often hear the question "Who needs plane geometry as it is studied in the 
school curriculum? This is a science for its own sake-it has no real extensions in 
higher mathematics and sometimes is too complicated and tricky." 

One answer (which is not complete, of course) is that "school geometry" is a 
wonderful playground for developing logical and consistent thinking. This "science 
for its own sake" may be regarded as a game played by axiomatic rules created by 
the ancient Greeks. Euclid and his predecessors (as well as his disciples) were quite 
convinced that these rules adequately reflected the laws of the real world around 
them. 

As a game, though, geometry can be compared perhaps only to chess in its 
complexity and elegance. Nowadays probably no one can boast about knowing 
all the secrets of either of these two great games of mankind. This fact (together 
with the limits on the size of the chapter) explains why we discuss here only some 
opening moves of the game. 

However, we must remember that geometry also is an inalienable part of math­
ematics and has various links to other areas of "the queen of sciences" : a good 
teacher will find great opportunities here to demonstrate the integrity of mathe­
matics. 

We don't want to link our explanation of the subject to any existing textbooks­
we'd rather that teachers choose for themselves topics for a session depending on 
the level of their students. We advise teachers to draw upon the school curriculum, 
but not follow it blindly. 

Do not be alarmed that most of the problems have virtually the same look 
as problems from textbooks. Indeed, it would be strange to demand "olympiad" 
questions in "school geometry" -the word "olyrnpiad" itself implies an extracur­
ricular atmosphere, stretching the limits of the curriculum. Geometry is, in fact, 
elaborated on quite well in numerous textbooks. Thus we often will refer the reader 
to other books for appropriate problem material. 

§1. Two inequalities 

High school geometry usually deals with precise statements like: 
"Points A, B, and C lie on the same straight line." 
"Altitudes of a triangle meet at one point." 
"The sum of the angles of a triangle equals 180 degrees." 

But for earlier study the main tools are undoubtedly the following two inequalities: 

153 
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Inequality N• 1. For any three points A, B, and C on the plane we have AB+ 
BC ;::: AC, and equality holds if and only if point B belongs to segment AC. 

Inequality N• 2. In a triangle the larger of any two sides is the side opposite the 
larger angle. That is, if in triangle ABC we have AB> AC, then LC> LB, and 
vice versa. 

In this section we recall these inequalities once more and present a few appli­
cations. 

Problem 1. Prove that if b + c > a, a+ c > b, and a+ b > c, where a, b, and care 
positive numbers, then there exists a triangle with sides a, b, and c. 

Problem 2. Prove that the length of median AM in triangle ABC is greater than 
(AB+ AC - BC)/2. 

Problem 3. Prove that you can form a triangle from segments with length a, b, 
and cif and only if there are positive numbers x, y, z, such that a= x+y, b = y+z, 
c =x+z. 

Problem 4. Using Inequality N• 2 above prove that if AB = AC, then angles 
ABC and ACB are equal. 

Problem 5. In triangle ABC the median AM is longer than half of BC. Prove 
that angle BAG is acute. 

For teachers. Problems 1-5 may be very simple for some students, especially if 
they have been exposed to the same topic in the school curriculum. After discussing 
the solutions to these easier problems, such students can tackle the following more 
difficult ones. 

Problem 6. Prove that if you can form a triangle from segments with lengths a, 
b, and c, then you can do this also with segments with lengths ,;a, ./b, ye. 
Problem 7. ABCD is a convex quadrilateral and AB+ BD <AC+ CD. Prove 
that AB< AC. 

Problem 8. The centers of three non-intersecting circles lie on the same straight 
line. Prove that if a fourth circle touches all three given circles, then its radius is 
greater than that of at least one of the given three. 

Problem 9. Let ABCD and A1B1C1D1 be two convex quadrilaterals whose cor­
responding sides are equal. Prove that if LA > LA,, then LB < LB,, LC > LC,, 
and LD < LD1. 

Problem 10. Prove that the median of a triangle which lies between two of its 
unequal sides forms a greater angle with the smaller of those sides. 

Problem 11. Is it possible for some five-pointed star ABCDEFGHI K (see Figure 
117) to satisfy the inequalities: AB > BC, CD> DE, EF > FG, GH > HI, 
IK >KA? 

Methodological remark. The problems of this set are a bit more difficult 
than Problems 1-5, but they, too, are not extremely hard to solve. Other problems 
using this material can be found in the chapter "The Triangle Inequality" of the 
present book. See also [65] and [42]. 
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FIGURE 117 

For teachers. We don't recommend that you devote an entire session to this 
section, but believe that it will be useful to give your students 2-3 of these problems 
in the course of several sessions. The goal is to implant the triangle inequalities 
into students' minds not as another "problem solving pattern" but as something 
more basic, which should be used almost unconsciously. 

Let's go to the solution to Problem 8. This problem is remarkable because it 
can be solved using Inequality N• l or using Inequality N• 2. 

Solution N• 1. We can assume that all circles touch each other externally (see 
Figure 118) (otherwise the radius of the fourth circle is larger than that of a circle 
it touches internally). Thus, if we denote the centers of the circles as A, B, C, and 
D, and their radii, respectively, as r 1 , r 2 , r 3 , and R, then the triangle inequality 
implies that AD + DC > AC; that is 

R + r, + R + r3 > AC > r1 + r3 + 2r2 

and, therefore, R > r2. 

FIGURE 118 

Solution N• 2. One of the angles DBA and DBC is non-acute and, therefore, it 
is the biggest in the triangle DBA or DBC. Without loss of generality we can 
assume this is angle DBA. Then it follows by inequality N• 2 that DA > AB; that 
is, R + r1 > AB > r1 + r2, or R > r,. 
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To conclude this section we list several problems whose solutions require an 
auxiliary idea together with the triangle inequalities. 

Problem 12. Given isosceles triangle ABC with vertex angle B equal to 20 
degrees, prove that a) AB< 3AC; b) AB> 2AC. 

Problem 13. The perimeter of a five-pointed star whose vertices coincide with 
those of a given pentagon F, the perimeter of F itself, and the perimeter of the 
inner pentagon of the star are prime integers. Prove that their sum is no less than 
20. 

Remark. Don't be surprised that this is classified as a geometric problem! 

Problem 14. A point is selected on each side of a square. Prove that the perimeter 
of the quadrilateral formed by these points is no less than twice the length of the 
square's diagonal. 

§2. Rigid motions of the plane and congruence 

This theme is very rich in interesting facts and connections with higher math­
ematics. Students can be led to an understanding of the role of symmetry in 
mathematics and to the concept of a group, which is central to much of higher 
mathematics. A crystallographic group, algebraic properties of the group of rigid 
motions of the plane, and Lobachevsky's geometry are all linked to this important 
subject. 

Fbr teachers. l. We assume that students are familiar with the basic congruence 
theorems (see any appropriate textbook or school curriculum). 

2. To begin the study of rigid motions of the plane, let the students list all the 
types of rigid motions they know. The definition of isometries (or rigid motions) 
is very simple: these are the transformations of the plane which preserve distance. 
It turns out there are just a few types: translations, rotations, line reflections, and 
glide reflections (compositions of a line reflection and a translation). 

Solutions to the following problems should be carefully discussed, as they are 
important in later work. 

Problem 15. Prove that given any two triangles, each with the same sides a, b, 
and c, we can make them coincide by moving one of them across the plane (and 
perhaps reflecting in a line). In other words, they are congruent. 

Problem 16. a) If rigid motion T leaves all the vertices of triangle ABC in place, 
then T is the identity transformation. 

b) If two rigid motions T and T' send the vertices of triangle ABC to the same 
points A', B', C', then T and T' are the same transformation (i.e., any point has 
the same image under i' as it does under T'). 

Problem 17. a) What is the composition of two translations? 
b)* Prove that any translation can be represented as a composition of two 

symmetries with respect to two points M and N. 
c)* Consider the rigid motion which is the composition of a symmetry in line 

m and a translation with unit distance in a direction parallel to line m. Prove that 
this rigid motion is neither a rotation, nor a translation, nor a line reflection. 
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For teachers. A geometric solution to the last problem should be thoroughly 
discussed, making sure that the students learn the concept of composition. This 
problem is probably more appropriate for homework than for solving in the session. 

Problem 18. Two equal circles are given. Is it always possible to map one of them 
to another by a rotation? 

Problem 19. Is it possible for a rotation to map a half-plane onto itself? What 
about a line symmetry? 

Problem 20. It is known that some figure on the plane coincides with itself after 
a rotation of 48 degrees about point 0. Is it necessarily true that it coincides with 
itself after a rotation of 72 degrees about the same point? 

For teachers. 1. The study of rigid motions and their compositions presents an 
excellent opportunity for a more general discussion of mappings and composition, 
with illustrations from both algebra and geometry. 

2. At some moment the students should be asked whether they know how to 
"construct" (with compass and straight edge only) the rigid motions of the plane. 
Can they, for instance, construct the image of a circle under a given line reflection? 

The next topic is the use of rigid motions for the solution of geometric problems. 
It deserves its own (very heavy) book. We will try to give some examples and 
introduce some basic ideas of the subject. 

Problem 21. Point A is given inside a triangle. Draw a line segment with end­
points on the perimeter of the triangle so that the point divides the segment in 
half. 

Problem 22. A sheet of paper is given, with two lines. The lines are not parallel, 
but intersect at a point off of the sheet of paper. Construct an angle which is twice 
as large as that made by the two lines. 

Problem 23. Inscribe a pentagon in a given circle so that its sides are parallel to 
five given straight lines. 

Problem 24. In trapezoid ABCD (AD II BC) M and N are the midpoints of 
the bases, and line MN forms equal angles with lines AB and CD. Prove that the 
trapezoid is isosceles. 

Problem 25. Points P, Q, R, and Sare taken on sides AB, BC, CD, and DA of 
square ABCD respectively so that AP: PB= BQ : QC= CR: RD= DS: SA. 
Prove that PQRS is a square. 

Problem 26. Point P and two parallel lines are given on the plane. Construct an 
equilateral triangle with one of its vertices coinciding with P and two others lying 
on the given lines. 

Problem 27. On a given line find a point M such that a) the sum of the distances 
from M to two given points is a minimum; b) the difference between these two 
distances is a maximum. 

We repeat that it is virtually impossible to exhaust this beautiful geometric 
topic, and refer the reader to the books [42, 65, 71] and [68], where he or she can 
find dozens of interesting and rather difficult problems in this area. Below are just 
a few more examples involving the properties of rigid motions and symmetries of 
figures on the plane. 
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Problem 28. Prove that if a triangle has two axes of symmetry, then it has at 
least three axes of symmetry. 

Problem 29. Which letters of the English alphabet have an axis of symmetry? A 
center of symmetry? 

Problem 30. Does there exist a pentagon with exactly two axes of symmetry? 

Problem 31. Find the set of all points X on the plane such that a given rotation 
sends X to X', and the straight line XX' passes through a given point S. 

Let us discuss now the proof of the rather difficult Problem 23. 
Instead of the five given lines L1 , L,, ... , Ls we consider lines K1 , K,, ... , 

Ks, perpendicular to them and passing through the center of the circle. Then it is 
clear that lines L; and AB (for any two points A and Bon the circle) are parallel 
if and only if A and B are gymmetric with respect to line K;. It remains to find 
a point Mon the circle which will remain fixed after reflection in all five lines K 1, 

K2 , ••• , Ks. Since the composition of five line reflections is a line reflection again 
(with its axis passing through the center of the circle!), such a point must exist and 
can be found as one of the points where the axis of gymmetry and the circle meet. 

Question. There is a small gap in the solution above. Find and fix it. 

§3. Calculating angles 

What do you need to know to calculate the angles of geometric figures? We 
give only the most basic facts here: 

(1) the sum of the angles in any triangle is 180 degrees; 
(2) a pair of vertical angles are equal; 
(3) angles lying along a straight line add up to 180 degrees (see Figure 119); 

FIGURE 119 

(4) an inscribed angle equals half the central angle which intercepts the same 
arc of a circle, and as a corollary, we have that 

(5) two inscribed angles intercepting the same arc of a circle are equal; 
(6) rigid motions of the plane do not change angle measure. 

Problem 32. Angle bisector BK is drawn in isosceles triangle ABC, with angle 
A equal to 36 degrees. Prove that BK= BC. 
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FIGURE 120 

Problem 33. Prove that the sum of the angles at the vertices of a five-pointed 
star (see Figure 120) equals 180 degrees. 

Problem 34. Can two angle bisectors in a triangle be perpendicular? 

Solution to Problem 32. Since LC = 72° and LB = 72°, we have LK BC = 36° 
and, therefore, CKB = 72°. Thus triangle KBC is isosceles and BK= BC. 

Solution to Problem 33. Clearly, 180° = LEBD+LBED+LBDE = LE+LB+ 
LD+LFED+LFDE. SinceLFED+LFDE= 180°-LEFD= 180°-LCFA= 
LA+LC, we have 180° =LE+ LB +LD+ LA+ LC. 

So, we can see that the method is as follows: we denote certain angles as a, /3, 
"/, o, ... , then we express all the other angles in terms of these. Using facts (1)-(6) 
we eventually come to the required result. 

Methodological remark. Here we have a subtle alternative. On the one hand, 
if we denote just one or two angles by letters, we might not be able to express 
the remaining angles and parameters of the problem as functions of the variables 
introduced. On the other hand, introducing too many angles as unknown variables 
will make our drawing messy and could make our goal unattainable (since possible 
correlations between the given angles can become obscured). 

For teachers. Usually, the choice of the "starting" angles (and of their 
number) constitutes one of the most important parts of the solution. To learn how 
to introduce the starting variables (in our case, the angles) is one of the crucial 
ingredients of mathematical culture on the "olympiad" level. Only vast experience 
or fully developed methodological thinking can help the students to find the right 
choice. 

Here are five more problems (see also [65, 70), and any school textbooks). 

Problem 35. Chords AB and CD in circle Sare parallel. Prove that AC= BD. 
Problem 36. The ratio of three consecutive angles in an inscribed quadrilateral 
is 2 : 3 : 4. Find their values. 
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Problem 37. In triangle ABC LA= go0 • Median AM, angle bisector AK, and 
altitude AH are drawn. Prove that LMAK = LKAH. 

Problem 38. Square ABCD is given. A circle with radius AB and center A is 
drawn. This circle intersects the perpendicular bisector of BC in two points, of 
which 0 is the closest to C. Find the value of angle AOC. 

Problem 39. Two circles intersect at points A and B. AC is a diameter of the 
first circle, and AD is a diameter of the second. Prove that points B, C, and D lie 
on the same straight line. 

The solution of Problem 37 is rather standard. 
Let us denote angle BCA as "' (see Figure 121). Then, since AM =MC, we 

get LM AC = "' and, therefore, LM AK = 45° - "' (and we see now that "' must be 
an angle which is not greater than 45 degrees). Further, LABC = goo - °'• which 
implies LEAH= ct. Thus LKAH = 45° - ct= LMAK. 

B 

FIGURE 121 

For teachers. 1. There are many more difficult problems on calculating angles. 
In fact, most problems in school geometry involve calculating angles, so it is a good 
habit to write down neatly the values of the angles on a geometric drawing. 

2. We believe that this is not a theme for a separate session. It would suffice to 
make up a few series of problems and submit them for solution at several different 
sessions. 

§4. Area 

This topic is as extensive as many other geometric topics, so we will concentrate 
more on methods. What are the main principles used in solving problems involving 
area? 

We will name just the most basic facts: 
a) The main properties of area: it is invariant under rigid motions of the plane, 

and if a figure is split into two disjoint figures, then its area equals the sum of the 
smaller areas. 

b) The main formulas: S = ah/2 (where S is the area of a triangle, a is its 
side, and h is the altitude perpendicular to that side); S = rp (where Sis the area 
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of a triangle, pis haJf its perimeter, and r is the radius of the inscribed circle), et 
cetera. 

c) Basic inequaJities such as 8 :::; ab/2 (where 8 is the area, and a and b are 
two sides of a triangle); see Problem 40. 

d) If there are expressions like ab or a2 + b2 present in the statement of a 
geometric problem (that is, expressions of degree 2), then it is likely you should try 
to use area to solve the problem. 

e) If there are expressions present in the statement of a problem which can be 
naturally linked with each other via some area formula, then write this formula 
down and examine it-this will never do any harm. 

From now on, we will frequently denote the area of figure F by IFI. 

For teachers. Items a), b), and c) give you a wonderful opportunity to find 
out the extent of your students' knowledge in this specific field of geometry. 

We do not advise that you turn the entire session into a discussion of this topic, 
aJthough the basic concept of this theme must be learned quite thoroughly. This 
cannot be done during a few sessions. For example, only after a year of successful 
seminars should you investigate more theoreticaJ parts of this branch of geometry 
(for example, axioms of area). 

Problem 40. The lengths of the sides of a convex quadrilateraJ are a, b, c, and 
d (listed clockwise). Prove that the area of the quadrilateraJ does not exceed a) 
(ab+ cd)/2; b) (a+ b)(c + d)/4. 

Problem 41. Is it possible that the ratio of the three aJtitudes of a triangle is 
1: 2: 3? 

Problem 42. A triangle of area 1 has sides of lengths a, b, and c where a ~ b ~ c. 
Prove that b ~ ../2. 
Problem 43. If aJl the sides of a triangle are longer than 1000 inches, can its area 
be less than 1 square inch? 

Solution to Problem 41. Let 8 be the area of a triangle, and a, b, and c the 
lengths of its sides. Then the aJtitudes are equaJ to 28/a, 28/b, and 28/c, and 
a : b: c = 1 : 1/2 : 1/3, which contradicts the triangle inequaJity. 

How did we think of introducing the area and the sides of the triangle? See 
item e) in the beginning of this section. 

The three preceding problems are good representatives of the subtopic "area 
and inequaJities". Below are a few problems deaJing with more "exact" caJculations. 

Problem 44. Points K, L, M, and N are the midpoints of the sides of quadrilateraJ 
ABCD. Prove that 2IKLMNI = IABCDI. 

Problem 45. Find the area of convex quadrilateral ABCD, if line AC is perpen­
dicular to line BD, AC= 3, and BD = 8. 

Problem 46. Triangle ABC is given. Point A1 lies on segment BC extended 
beyond point C, and BC= CA1 . Points B1 and C1 are constructed in the same 
way (see Figure 122). Find IA1B1Cil, if IABCI = l. 

Problem 47. Point M lies within triangle ABC. Prove that areas of triangles 
ABM and BCM are equaJ if and only if M lies on median BK. 
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FIGURE 122 

Finally, a series of problems whose solutions require not only calculations but 
also proof. 

Problem 48. Prove that if two convex quadrilaterals have the same midpoints for 
all their sides, then their areas are equal. 

Problem 49. The diagonals of trapezoid ABCD (with BC II AD) meet at point 
0. Prove that triangles AOB and COD have equal areas. 

Problem 50. Prove that the sum of the distances from a point inside an equilateral 
triangle to its sides does not depend on the position of the point. 

For teachers. You can see from the solutions to Problems 44-47 that even if 
a problem is about area, standard geometric ideas may apply as well: congruent 
triangles, similarity, Thales's theorem. 1 This is quite natural. Using such examples, 
you can make the students see that the solution to a problem usually includes several 
ideas. It is rare that an "olympiad" problem can be solved in one move. This is 
a very general principle of problem solving, applicable to higher mathematics as 
often as to olympiads and other contests. 

§5. Miscellaneous 

This section consists of three sets of problems on topics not discussed in the 
present chapter. These problems are intended mostly for homework and can be 
considered as exercises to accompany more detailed study (see also the other books 
on geometry in the list of references). 

Set 1. Constructions 

Problem 51. Construct a triangle if you know 
a) its base, altitude, and one of the angles adjacent to the base; 
b) the three midpoints of its sides; 
c) the lengths of two of its sides and the median to the third side; 
d) two straight lines which contain its angle bisectors, and its third vertex. 

1Thales's theorem, one of the oldest geometric results on record, states that a line parallel 
to one side of a triangle divides the other two sides in proportion. 
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Problem 52: Find the midpoint of a segment 
a) using a compass only; 
b) using only a two-sided ruler (with two parallel sides), whose width is less 

than the length of the segment; 
c) using only a two-sided ruler, whose width is greater than the length of the 

segment. 

Problem 53. Segment AB is given in the plane. An arbitrary point M is chosen 
on the segment, and isosceles right triangles AMC and BM D are constructed on 
segments AM and MB (as their hypotenuses) so that points C and D are on the 
same side of AB. Find the set of midpoints of all such segments CD. 
Problem 54. A certain tool for geometric construction can be used to 

a) draw a straight line through two given points; 
b) erect a perpendicular to a given line at a point lying on the line. 
Show how to use this tool to drop a perpendicular from any given point to any 

given line. 

Problem 55. Peter claims that the set of points on the plane which are equidistant 
from a given line and a given point is a circle. Is he right? 

Set 2. Calculations 

Problem 56. Find an error in the following "proof" of the fact that in a right 
triangle, the hypotenuse has the same length as a leg (see Figure 123). Point M 
is the intersection of the bisector of angle C and the perpendicular bisector of 
segment AB. Points K, L, and N are the feet of the perpendiculars dropped from 
M to the sides of the triangle. Triangles AM K and MK B are congruent since 
they have equal hypotenuses and equal legs. Thus, AM = MB, and triangles 
ALM and MN B are congruent for the same reason. Therefore, AL = NB and 
AC= AL+LC =NB+CN =BC. 

A 

FIGURE 123 

Problem 57. ABCD is a quadrilateral such that BC= AD, and Mand N are 
the midpoints of AD and BC respectively. The perpendicular bisectors of segments 
AB and CD meet at point P. Prove that P also lies on the perpendicular bisector 
of segment MN. 
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Problem 58. A right triangle with an acute angle of 30° is given. Prove that the 
length of that part of the perpendicular bisector of the hypotenuse which lies inside 
the triangle equals one third of the greater leg of the triangle. 

Problem 59. Altitudes AA1, BBi. CCi, and medians AA., BB2, CC2 are drawn 
in triangle ABC. Prove that the length of the broken line A1 B2C1 A2B 1 C2A1 equals 
the perimeter of triangle ABC. 

Set 3. Similarity 

Problem 60. One of the diagonals of an inscribed quadrilateral is a diameter 
of its circumcircle. Prove that the projections of any two opposite sides of the 
quadrilateral onto the other diagonal are equal. 

Problem 61. Arc AB, measuring 60°, is given on a circle with center 0, and 
point M is chosen on the arc. Prove that the straight line that passes through the 
midpoints of segments MA and OB is perpendicular to the line passing through 
midpoints of segments MB and OA. 

Problem 62. Angle bisector AD is drawn in triangle ABC. Prove that CD/ DB = 
CA/AB. 

Problem 63. In isosceles triangle ABC perpendicular HE is dropped from the 
midpoint Hof BC to side AC. Prove that if 0 is the midpoint of HE, then lines 
AO and BE are perpendicular. 

Epilogue 

I. The topic "Geometric inequalities", which we merely touched on in §1, 
can be developed much further. Many very beautiful pearls of geometry, such as 
isoperimetric inequalities (see [42], Chapters 15 and 16), follow from the simple 
triangle inequalities. 

2. Don't forget that in the present chapter we not only give some particu­
lar topics and problems but also indicate possible directions of how a session can 
proceed. We hope you will find the methodological remarks in this chapter useful. 

3. "Calculating angles" is only one theme representing the entire realm of 
"computational geometry", which can also be studied. 

4. Unlike other topics in this chapter, "Area" begins with rather difficult prob­
lems rather than with mere exercises. You can find many simpler problems in 
textbooks. 

5. For teachers. If a problem cannot be "captured" with a quick attack, then, 
perhaps, it may fall to a long and careful siege (which may take days or weeks). 
Such a siege is conducted by combining different methods and various ideas, using 
calculations, or through a gradual accumulation of facts. 

6. Many beautiful themes in plane geometry, which are quite accessible to 
students, are not described in the present chapter. These include similarity and its 
applications, inscribed and circumscribed polygons, interesting points in a triangle, 
numerical relations, et cetera. They deserve to be studied, but we cannot include 
them all here since this would turn this chapter into a huge and dull reference. 
We have just tried to outline the basic aspects of this peculiar game and science, 
dropping only similarity from the most important topics. In spite of the diversity of 
the material covered here, we believe that it is very important to show the students 
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its integrity, and also the links which connect its various areas with each other and 
with the other branches of mathematics and science. 

7. Quick reference guide: 
a) A large number of problems from the usual geometry curriculum can be 

found in books [42, 44, 34, 65, 70, 64] and others. However, the first two of them 
ascend too quickly to the heights and are not recommended for most students. 

b) Books [67] and [71] are excellent for those who like to see mathematics as 
algebra rather than geometry. They also provide very good problems on transfor­
mations of the plane. 

c) Books [68] and [69] are two of those rare mathematical books which are 
simply pleasant to read. However, we face the question "for whom are these books 
written?" It seems that the books were intended for people who already know 
their contents. These books can be read again and again-the vividness of their 
explanations will attract all readers interested in the subject. Also instructive are 
the geometric chapters (and others, too) in Martin Gardner's books [5, 6] and [7]. 





CHAPTER 15 

Number Bases 

§1. What are they? 

Any student can say that "2653" stands for the number "two thousand six 
hundred fifty three", whatever that may mean. How do they know this? We are 
all accustomed to the following way of writing numbers: the last digit denotes the 
number of units in the given number, the next-to-last-the number of tens, the 
third last-the number of hundreds, and so on (though this is a bit ambiguous, 
since the number of units in 2653 is, in a way, not 3, but 2653!). This way of 
writing numbers (and interpreting strings of digits) is called in brief a number base 
system. Thus, writing "2653", we think of the number 2· 1000+6· 100+5· 10+3· l, 
or shortly, 2 · 103 + 6 · 102 + 5 · 101 + 3 · 10°. We print the digits of the number in 
boldface to make it easier to distinguish them from other numbers. 

We can easily see that the number ten plays a special part in this representation: 
any other number is written as a sum of different powers of ten with coefficients 
taking values 0 through 9. This is why this system is called "decimal" (from the 
latin word for "ten"). To write a number we use the ten special symbols 0, 1, 2, 
3, 4, 5, 6, 7, 8, and 9, called digits. They denote the numbers from zero to nine. 
The next number, that is, ten, is regarded as a unit of the next level and is written 
with two digits: 10, which, roughly speaking, means "add up one times ten and 
zero times one" . 

Now, what if we used some other number, say, six? Analogously, we would 
need six symbols as digits. We can take the six familiar symbols 0, l, 2, 3, 4, and 
5, which will denote the numbers from zero to five. The number six will be the 
unit of the next level, and, therefore, it will be written as 10. Proceeding with this 
analogy, we can represent each natural number as the sum of different powers of six 
with coefficients from 0 to 5. For instance (all numbers are written in the decimal 
system): 

7=1·61 +1·6°, 

12 = 2. 61 +0. 6°, 

35=5·61 +5·6°, 

45 = 1 . 62 + 1 . 61 + 3 . 6°. 

Thus in our new number system (which is called the "base six system") we write 
the number 7 as "11", the number 12 as "20", 35 as "55", and 45 as "113". 

It is easy to see that we can write any natural number in the base six system. 
We show how to do this for the number 450 (in this example, as earlier, all the 
given numbers are written in the decimal system unless enclosed in quotes). 

167 
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The largest power of six that does not exceed 450 is 216. Dividing 450 by 216, 
we have a quotient of 2 (and a remainder of 18). Thus the first digit of the numeral 
450 for the base six system is 2. Now we take the remainder 18 and divide it by the 
next smaller power of six-at the previous stage we divided by 63 = 216, and now 
we divide by 62 = 36. The quotient is 0, hence the second digit is 0. The remainder 
is 18 and we divide this by the next smaller power of six; that is, by 61 = 6. Now 
we see that the next digit is 3 (the remainder is 0). Therefore, the last digit (the 
quotient after the division by 6° = 1) is 0. Finally, the base six representation of 
450 is "2030". 

While building our new system, we have not used any particular properties of 
the number 6, whatever they may be. Similarly, starting with any natural number 
n greater than 1, we can build a base n number system, in which the digits of 
a number are connected with its representation as a sum of powers of n. In this 
system, the number n is called the base. Tu avoid ambiguity, we will write the base 
of the system as a subscript (in decimal notation) at the right end of the numeral. 
Using this notation, we can rewrite the equalities indicated earlier as: 

710 = 116, 1210 = 20., 3510 = 555, 4510 = 1136 . 

Exerciae 1. How many digit symbols do we need for a 
a) binary (that is, base 2) system; 
b) base n number system? 

To write a number in the base n system, we must represent it in the following 
form: 

aknk + ak-1nk-l + ... + a2n2 + a1n1 + aon°, 

where each a; takes values from 0 to n - 1, and ak is not equal to zero (although 
the last restriction is, strictly speaking, not necessary). 
Exerciae 2. Write in decimal notation the numbers 10101a, 101013, 2114, 1261, 
and 15811. 
Exercise 3. Write the number 10010 in the systems with bases 2, 3, 4, 5, 6, 7, 8, 
and 9. 
Exerciae 4. In a system whose base is greater than 10, we need more than ten 
digit symbols, so we must invent some. For example, in the base 11 system, we 
might use "A" to represent the "digit" 10. So, for example, 2110 could be written 
as lA. Using this convention, write the number 11110 in the base eleven notation. 

Let us learn how to add and multiply numbers written in an arbitrary system. 
We can do this in exactly the same way as in the decimal system, but we must 
remember that a "carry" occurs each time the result of adding up digits in a column 
exceeds or equals the base of the given number system. 

Below is an example of the addition of the two numbers 12410 and 41710 in the 
base 3 system. First, we rewrite the numbers in the base 3 system: 12410 = 111213, 
41710 = 1201103. Then we write them one under another, lining up their rightmost 
digits. "Carries" are given in the upper row in small print. 

(I) (1) (I) 

1 1 1 2 
+ 

2 0 0 
2 0 2 0 0 
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To perform these operations successfully one must know the addition and mul­
tiplication tables for numbers less than the base of the system-that is, for one-digit 
numbers. For the decimal system, we have learned it early and well. 
Exercise 5. Write down these tables for systems with bases 2, 3, 4, and 5. 
Exercise 6. Calculate a) 11002 + 11012; b) 2013 · 1023. 

Fbr teachers. We explained here very briefly how to add and multiply the 
numbers in any number base system. In a real session this would take more time. 
Of course, the goal of this work is not speed or accuracy in computations written in 
another number base system. An examination of and some practice in the addition 
and multiplication algorithms written in systems other than base 10 can lead to a 
deeper understanding of these algorithms. 

Now we describe an effective algorithm for converting from one number system 
to another. It differs from the one we already know, because now the representation 
of a number will appear digit by digit from right to left rather than from left to 
right. The last digit is just the remainder when the number is divided by the base 
of the new system. The second digit can be found as follows: we take the quotient 
from the previous calculation and find the remainder when the quotient is divided 
by the base of the new system. Then we proceed in exactly the same way until we 
complete the representation. 

Example. Let us convert the number 25010 to the base 8 ("octal") system: 

Thus, 25010 = 372a. 

250 = 31 . 8 + 2, 

31=3 ·8+7, 

3=0·8+3. 

Exercise 7. Convert to the base 7 system the numbers a) 100010 ; b) 5328. 

In conclusion we submit a few more interesting problems. 

Problem 1. A teacher sees on the blackboard the example 3 · 4 = 10. About to 
wipe it away, she checks if perhaps it is written in another number base system. 
Could this thought have been right? 

Problem 2. Does there exist a number system where the following equalities are 
true simultaneously: 

a) 3 + 4 = 10 and 3 · 4 = 15; 
b) 2 + 3 = 5 and 2 · 3 = ll? 

Problem 3. State and prove a condition (involving the representation of a number) 
which allows us to determine whether the number is odd or even 

a) in the base 3 system; 
b) in the base n system. 

Problem 4. A blackboard bears a half-erased mathematical calculation exercise: 

2 3 
+ 

6 4 2 
4 2 4 2 3 
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Find out which number system the calculation was performed in and what the 
summands were. 

Problem 5. A teacher said that there were 100 students in his class, 24 of whom 
were boys and 32 of whom were girls. Which number system did the teacher use in 
this statement? 

For teachers. The material of this section can be discussed during two or three 
successive sessions. Students must learn: 

-the concept of a number system; 
-how to convert numbers from one system to another; 
-·how to add and multiply in an arbitrary number system. 

To make this rather technical material less boring, we recommend using problems 
similar to 1-5 above. 

§2. Divisibility tests 

In the previous section we learned how to add and multiply numbers in an arbi­
trary number base system. The reverse operations-subtraction and division-are 
performed in the same manner as in the decimal system. However, these operations 
(like "long division", for example) are a bit more difficult, even in our usual decimal 
system. 

Thus, it is often convenient to use divisibility tests to find out if one number 
is divisible by another, without actually performing the operation. The tests for 
the decimal system are discussed in the chapter "Divisibility-2". In non-decimal 
systems the situation is more unusual and difficult-try, for example, to find out if 
123456654321, is divisible by 6. 

Let us start simply. How do we know that a number with its last digit equal 
to zero is divisible by 10? The point is that in the decimal representation of any 
number 

aklOk + ak-110k-I + ... + a2102 + a1101 + aol0° 

all the summands are divisible by 10, except, perhaps, the last one. In our case, 
however, the last summand is zero and, therefore, the whole sum is divisible by 10. 
We can prove the converse statement similarly: if a natural number is divisible by 
10, then its last digit is zero. 

Consider now an arbitrary number system. The same ideas allow us to prove 
the following divisibility test: 

In a base n system the representation of a number ends with zero if and only 
if this number is divisible by n. 
Problem 6. State and prove the divisibility test for 

a) a power of the base of a system (similar to divisibility tests for 100, 1000, 
in the decimal system); 
b) a divisor of the base of a system (similar to divisibility tests for 2 and 5); 
c) a power of a divisor of the base of a system. 

Methodological remark. We would like to emphasize once again that different 
number systems are just different ways to write numbers. Thus the divisibility of 
one number by another does not depend on the particular system in which they are 
written. 
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At the same time, in each system there are some tricks to determine divisibility 
by certain specific numbers. These are the divisibility tests. 

Let us investigate now other, less trivial, divisibility tests. Perhaps the most 
well-known of these are the tests for divisibility by 3 and 9. We will try to generalize 
these tests for any number base system. First, we must understand the proof of 
that test in the decimal system (see the chapter "Divisibility and remainders"). 
The only significant fact used is that 9 = 10-1, and therefore that 10 = 1 (mod 9). 

Let us formulate and prove the analogous test for divisibility by n - 1 in the 
base n system. Indeed, n = 1 (mod n - 1). Hence, n' = 1 (mod n - 1) for any 
natural number s. Therefore 

aknk + ak-1nk-I + ... + a1n1 + aon° = ak + ak-1 + ... + a1 + ao (mod n-1). 

Thus the sum of the digits of a number written in the base n system is divisible by 
n - 1 if and only if the number itself is divisible by n - 1. 

Let us recall the question we asked at the beginning of this section: is 
1234566543217 divisible by 6? Now we can answer this question easily: since the 
sum of the digits (which is 4210 ) is divisible by 6, the number itself is also divisible 
by 6. 

Problem 7. State and prove the test for divisibility by 
a) a divisor of the number n-1 in the base n system (similar to the divisibility 

test for 3 in the decimal system); 
b) the number n + 1 in base n system (similar to the divisibility test for 11); 
c) a divisor of the number n + 1 in the base n system (there is no analog in 

base 10). 

For teachers. We reoommend devoting a whole session to the topic of this 
section. It would be wonderful if during this session students (using hints from the 
teacher) could formulate and prove various new divisibility tests. 

§3. Miscellaneous problems 

Up to now we have been interested in number systems for themselves. Now we 
are going to discuss a few problems which seem to have nothing to do with number 
systems. However, non-decimal number systems arise quite naturally when we try 
to solve these problems. 

Problem 8. What is the minimum number of weights which enable us to weigh 
any integer number of grams of gold from 1 to 100 on a standard balance with two 
pans? Weights may be placed only on the left pan. 

Solution. Every natural number can be written in the binary system. Thus, to 
weigh any number of grams of gold from 1 through 100 it is sufficient to have seven 
weights: 1, 2, 4, 8, 16, 32, 64. On the other hand, six weights are insufficient since 
we can obtain no more than 26 - 1 = 63 different weights with them (each weight 
is either placed or not placed on the left pan). 

Remark. Note that we did not assume that the weights must be integers. This 
assumption would not make the solution simpler. 

Problem 9! The same question as in the previous problem, but the weights can 
be placed on either pan of the balance. 
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Solution. To explain the solution to this problem we need the following interesting 
property of the base 3 system: 

Every natural number can be represented as the difference of two numbers 
whose base 3 representations contain only O's and l's. 

We can prove this property by writing the original number in the base 3 system 
and constructing the required numbers digit by digit from right to left. This is a 
good exercise, and is left to the reader. 

Now it is clear that it suffices to have only 5 weights that weigh 1, 3, 9, 27, 81 
(can you see why we don't need a weight of 243 grams?). 

Four weights are insufficient since we cannot weigh more than 34 - 1 = 80 
different weights on them (each weight is either placed on the left pan, or on the 
right, or not placed on the balance at all). 

Problem 10. An evil king wrote three secret two-digit numbers a, b, and c. A 
handsome prince must name three numbers X, Y, and Z, after whiclt the king will 
tell him the sum aX + bY + cZ. The prince must then name all three of the King's 
numbers. Otherwise he will be executed. Help him out of this dangerous situation. 

Solution. The prince can name the numbers 1, 100, and 1002 = 10000. The 
numbers a, b, and c will then just be the digits of the sum aX + b Y + cZ in the 
base 100 system. 

Problem 11: Prove that from the set 0, 1, 2, ... , 3k-t one can choose 2k numbers 
so that none of them can be represented as the arithmetic mean of some pair of the 
cltosen numbers. 

Solution. We will use the base 3 system. Let us assume that the base 3 repre­
sentation of any of the given numbers contains exactly k digits-if there are fewer 
than k, then we just fill in the rest of the places with zeros. Now we cltoose those 
numbers whose base 3 representations contain only O's and l's. There are exactly 
2• of them. We show that this can serve as the required subset. Suppose that 
there were three different numbers in the subset-say, x, y, and z---satisfying the 
equality x + y = 2z. Since the numbers x and y must differ in at least one digit, 
we could then find the rightmost suclt digit. The corresponding digit of their sum 
x + y would be 1. But the base 3 representation of 2z contains only O's and 2's. 
This is a contradiction. 

Problem 12. Prove that a subset of 2k numbers with the same property can be 
cltosen from the numbers 0, 1, 2, ... , (3k - 1)/2. 

For teachers. The problems from this section can be given at sessions or used 
in various mathematical contests. 

§4. The game of Nim 

Here we will talk about one form of. the famous game of Nim (see Martin 
Gardner's books [5-7]). Its rules are simple. There are three heaps of stones (the 
initial number of stones in eaclt heap may vary). Two players make their moves in 
turn by taking several stones from the heaps. It is allowed to take any number of 
stones but only from one heap at a move. A player who takes the last stone wins 
the game. 

It is remarkable that the winning strategy for this game can be expressed using 
the binary system. We will discuss this strategy in a more generalized situation: 
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for an arbitrary number of heaps. We also note that in the case of two heaps this 
game can be turned into a game with a (chess) rook on a rectangular board (see 
Problems 10, 16, 22 from the chapter "Games"). 

As usual, to "solve" the game it is sufficient to determine the set of winning 
positions (see §3 of the chapter indicated above). Let us write the binary represen­
tations for the numbers of stones in each heap one under another, in such a way 
that the units digits are in the same column, the tens digits are also in the same 
column, et cetera. Then we calculate the parity of the number of l's in each column 
(E denotes "even" and 0 denotes "odd"). For example, suppose there are three 
heaps, with 101, 60, and 47 stones. Then we write: 

101 
60 
47 

0 0 

0 0 
1 
0 

0 0 0 1 
1 1 0 0 
0 1 1 1 1 
0 E 0 0 E 

0 1 
0 0 

1 

We claim that a position is winning if and only if the number of l's in any 
column is always even; that is, all the letters in the bottom row are E's (so that 
the position shown above is, presumably, a losing one). We will call such positions 
"even" and any other position uodd". 

To prove that a position is winning if and only if it is even, we must show that: 
l. The final position of the game is even. 
2. Any move from an even position leads to an odd position. 
3. From any odd position you can shift to some even position in one move. 
Part 1 is easy. The game ends when there are 0 stones in each heap, and 0 is 

even. 
To prove part 2 we notice that after each move the number of stones in some 

heap changes, and, therefore, some digit in its binary representation changes. This 
means that the number of l's in the corresponding column changes by l. Since no 
other row can change (stones can be removed from only one heap at a time), the 
parity at that column changes, too. 

We now show how to move from an arbitrary odd position to an even one. We 
must take several stones from one heap so that the parity of the numbers of l's in 
the columns changes for all the columns with an odd number of l's in them (and 
only for these columns!). Consider the leftmost column with an odd number of l's 
in it and choose a heap which has 1 as its digit in this column (why does there exist 
such a heap?). This heap is the one we will take the stones from. 

It is easy to understand how many stones must be left in this heap-the binary 
representation of the number of stones in the heap must change in those digits 
which correspond to the columns with an odd number of l's in them. We must 
take away exactly as many stones as will make this happen. Since the leftmost of 
these digits will change from 1 to 0, the number of stones in the heap will, in fact, 
decrease. 
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Problem 13. Solve the following games: 
a) There are eight white pawns in the first row of a chessboard, and eight black 

pawns in the eighth row. Each of two players, in turn, can move one of his or her 
pawns towards the other end of the board in a vertical direction for any number of 
boxes. It is not allowed to jump over a pawn of the opposite color. The player •¥ho 
cannot make a move loses. 

b) The same game, except that it is allowed to move the pawns not only for­
wards but backwards too. 

For teachers. It makes sense to discuss the game of Nim only with students 
of sufficiently high mathematical skill. Students should play each other and submit 
their own conjectures and strategies. It is rather difficult to devise the correct 
winning strategy; however, exact and timely hints can facilitate this process and 
allow students to solve as much as they can of the problem independently. 



CHAPTER 16 

Inequalities 

§1. What's greater? 

This question is, perhaps, one of the most common children ask. Children are 
very curious, and you can hear from them questions like these: 

-Who is stronger: my dad or the arm wrestling champion? 
-Which is higher: our house or the World Trade Center? 
-Do more people live in Chicago than in Atlanta? 
In mathematics such "na1ve" questions do not make much sense, but they help 

students learn how to calculate better and more precisely, and to deal with "really 
large" numbers. Of course, we are not talking here about using calculators, which 
are not helpful if we want to be absolutely rigorous in our proofs. 

For teachers. The technique of calculation and estimation is one of the 
most valuable aspects of mathematical culture. Students have to master not just 
"blind usage" of various methods of computation and approximation; they must 
understand their essence. It is impossible to remember all the technical tricks of 
mathematics. But it is possible and necessary to teach students how to do things 
''with their bare hands" . The skill of fast and precise estimation can be achieved by 
solving problems with specific numerical data, like those we consider in this section. 

Here is a typical problem of this series. 

Problem 1. Which number is greater: 3111 or 17147 

Certainly, you can calculate both numbers "manually" -they have no more 
than 20 digits. However, this way of dealing with the problem is time consuming 
and will yield nothing in other, more intricate, problems. Let us try another way. 

31" < 32" = (25)" = 255 < 256 = (24)14 = 1514 < 1714. 

This chain of inequalities shows that 3111 is less than 1714 . The only thing we 
needed for this solution was to observe that the numbers 31 and 17 are not far 
away from powers of 2. 

Problem 2. Which number is greater: 
a) 2300 or 32007 
b) 240 or 328 7 
c) 544 or 4537 

Problem 3. Prove that 210° + 3ioo < 4100. 

Solution. Clearly, 2100 < 3100 . So it is enough to prove that 2. 3100 < 4100 , or, 
equivalently, ( !} 100 > 2. But even ( ~) 3 = ~ is greater than 2. 

Problem 4. Which number is greater: 792 or 891 7 

175 
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To further investigate the situation in Problem 3, let us try to find a natural 
number n such that 4n < 2100 + 3100 < 4n+1. On our way to the solution we 
encounter the following problem. 

Problem 5! Prove that 479 < 2100 + 3100 < 480. 

Solution. Since 2 · 3100 > 2100 + 3100, it is enough to show that 480 > 2 · 3100; that 
. (4' )20 (256)20 
IS, J!' = 243 > 2. 

We recall Bernoulli's inequality: (1 + x)n 2:: 1 + nx for x 2:: -1, n 2:: 1 (see 
Problem 56 or the chapter "Induction"). This fact motivates the question: is it 

true that~~~ > 1 + fo? The answer is yes (check it yourself!). Hence, (~~~) 20 > 
(1 + foJ20 2:: 2. 

Now we prove that 2100 + 3100 > 479 . We will show that 3100 > 479 , or 
48o ;3100 < 4, by building the following chain of inequalities: 

480 = (256) 20 (~)20 = (361) 10 

3100 243 < 18 324 

(~) 10 
= (~) 5 (~) 5 = 59049 . < 8 64 < 7 16807 < 4 

Comment. As you see, the method consists of gradual simplification of an ugly 
and complicated expression such as 480 /3100. 

For teachers. To learn this method well, it is necessary for the students to 
be familiar with various small powers of natural numbers. They should also not be 
afraid to perform any specific (though, perhaps, long) calculation as long as they 
understand its goal. This can be helped by solving problems similar to the next 
one. 

Problem 6. Find all powers of the natural numbers 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 
which are no greater than 10000, and arrange them in increasing order. Find all 
pairs of these powers with differences no greater than 10. 

Comment. This is an excellent problem for homework, using a calculator. 

The solutions to the following three problems are based on a very different 
idea. So far we proved inequalities between specific natural numbers simply by 
transforming (simplifying) them and calculating the results of the transformations. 
The new idea is to change some specific number to a variable. 

Problem 7. Which number is greater: 1234567 · 1234569 or 12345682? 

Solution. We denote the number 1234568 by x. Then the left-hand expression is 
(x-l)(x+l) = x2 -1 < x 2 . Thus, we avoid the necessity of multiplying seven-digit 
numbers or raising them to a power. 

Problem 8. We are given the two fractions 

10 ... 01 
10 ... 001 

and 
10 ... 01 

10 ... 001 · 

In each fraction the number in the denominator has one zero more than the one 
in the numerator. If the numerator in the left fraction has 1984 zeros, and the 
numerator in the right fraction has 1985 zeros, which of them is greater? 
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Problem 9. Which number is greater: 1234567 /7654321 or 1234568/7654322? 

Here are a few more problems using estimates and approximations. 

Problem 10. Which number is greater: 100100 or 5050 · 15050? 

Problem 11. Which number is greater: (1.01)1000 or 1000? 

Problem 12. Prove that 

177 

Problem 13. (This is almost a joke.) If you apply the factorial function 99 times 
to the number 100, then you get the number A. If you apply the factorial function 
100 times to the number 99, then you get the number B. Which of them is greater? 

Let us discuss the solution to Problem 12. We split the summands into pairs 

Now we have a sum of positive numbers, which begins with 1/6+1/20+1/42 + .... 
Since 1/6 + 1/20 > 1/5, we immediately have the required result. 

Miscellaneous 

14. How many digits does the number 21000 have? 

15. Find the largest of the numbers 5100, 691 , 790 , 885 . 

16! Prove that the number ~ · ~ · ~ ... 19ci:, is 
a) less than 1/10; 
b) less than 1/12; 
c) greater than 1/15. 

Fbr teachers. We can create a lot of questions similar to Problems 1-10. For 
example, let us take two small natural numbers-say, 5 and 7. Then consider a 
large power of 5-let it be 573 . Now we seek two relatively small powers of 5 and 7, 
which differ "not by much" (this depends on your sense of measure). For instance, 
54 = 625 and 73 = 343 will do (the exponents must be different!). Since 54 > 73, 
we have that 572 > 754 . Therefore, 573 > 572 > 754 . After this, we can "fix" the 
exponent 54 a bit and we get another exercise: prove that 573 > 753 . 

Comment. This class of inequalities, which are the result of combinations of 
several simple and "rough" inequalities, has a special name in Russian olympiad 
folklore. They are called "inequalities a la Leningrad". 

For teachers. Solving these numerical inequalities helps develop computa­
tional skills and approximation technique. However, some students, who may be 
gifted in logical and combinatorial mathematics, may have a sort of "allergy" to 
computational problems like these. 



I78 MATHEMATICAL CIRCLES (RUSSIAN EXPERIENCE) 

§2. The main inequality 

The main (and, in some sense, the only!) inequality in the field of real numbers 
is the inequality x2 ~ 0-its truth is beyond doubt. Other, well-known and useful, 
inequalities follow from this one. The first among them is, certainly, the inequality 
of means (or the A.M.-G.M. inequality): 

a+b r; 
- 2- ~ vab for any a,b ~ 0 

-the numbers (a + b) /2 and VaJ, are called the arithmetic mean and geometric 
mean of the numbers a and b. 

This is very easy to prove: 

a+ b _ VaJ, =a+ b- 2,/(J, = ~( 'a- Vb)2 > 0 2 2 2 yv. -

-which implies not only the truth of the A.M.-G.M. inequality, but also the fact 
that this inequality turns into an equality if and only if a = b. 

Problem 17. Prove that 1 + x ~ 2,/X, if x ~ 0. 

Problem 18. Prove that x + l/x ~ 2, if x > 0. 

Problem 19. Prove that (x2 + y2)/2 ~ xy for any x and y. 

Problem 20. Prove that 2(x2 + y2) ~ (x + y)2 for any x and y. 

Problem 21. Prove that l/x + l/y ~ 4/(x + y), if x > 0, y > 0. 

Solution to Problem 18. (x + l/x) - 2 = (JX- ,/l/x)2 ~ O. 

Remark. Generally speaking, solutions to any of these problems can be reduced 
either to an appropriate application of the A.M.-G.M. inequality, or, after some 
"appropriate" transformations, to an application of the main inequality x2 ~ 0. 

More complicated inequalities, however, are usually solved either by multiple 
application of the A.M.-G.M. inequality, or by combining several different ideas. 
Here is a typical example: 

Problem 22. Prove that x2 + y2 + z2 ~ xy + yz + zx for any x, y, and z. 

To prove this fact we will use the result of Problem 19, and write three inequal­
ities: 

1 1 1 
2(x2 + y2) ~ xy, 2(x2 + z2) ~ xz, 2(Y2 + z2) ~ yz. 

Adding them up, we are done. 

Problem 23. If a, b, c ~ 0, prove that (a+ b)(a + c)(b + c) ~Babe. 

Problem 24. If a, b, c ~ 0, prove that ab+ be+ ca ~ a,/bC + b,;ac + cVaJ,. 

Problem 25. Prove that x2 + y2 + 1 ~ xy + x + y for any x and y. 

Problem 26. Prove that for any a, b, and c, the inequality a4 + b4 + c4 ~ 
abc(a + b + c) holds true. 

Solution. We will use the inequality from Problem 22-twice! 

a4 + b4 + c4 = (a2)2 + (b2)2 + (c2)2 ~ a2b2 + b2c2 + c2a2 

= (ab) 2 + (bc) 2 + (ca) 2 ~ (ab)(bc) +(be)( ca)+ (ca)(ab) 

=abc(a+b+c). 
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The A.M.-G.M. inequality is remarkable in two ways. First, it allows us to 
estimate the sum of two positive numbers in terms of their product. Second, it can 
be generalized for more than two numbers. Here, for example, is the A.M.-G.M. 
inequality for four positive numbers: 

a+b+c+d 4,,----; 
4 ~ vabcd for any a,b,c,d ~ O, 

where, as usual, the left and the right sides of the inequality are called the arithmetic 
and the geometric mean of the four given numbers respectively. 

This version of the A.M.-G.M. inequality can be proved as follows: 

a+b+c+d 1 (a+b c+d) 1( 0i 'Ci) J 'b 'Ci 4'/,d 
4 =z -2-+-2- ~2vao+vca ~ vaovca=vaoca 

-we just apply the A.M.-G.M. inequality for two numbers twice. 

Problem 27. Prove that x4 + y4 + 8 ~ 8xy for any x and y. 

Problem 28. If a, b, c, and d are positive numbers, prove that 

It is, however, not so easy to prove the A.M.-G.M. inequality for three positive 
numbers: 

a+b+c a,,-__ 3 __ ~ vabc foranya,b,c~O. 

Let us consider four numbers: a, b, c, and m = Vabc. Then 

a+b:c+m ~ Vabcm= Vm3 ·m=m. 

Hence, (a+b+c)/4 ~ 3m/4, and, therefore, a+b+ c ~ 3m, (a+b+c)/3 ~ Vabc. 
Problem 29. If a, b, and c are positive numbers, prove that 

~+~+.".>3. 
b c a -

Problem 30. Prove that if x ~ 0, then 3x3 - 6x2 + 4 ~ 0. 

Solution. We show that 3x3 + 4 ~ 6x2 . Since 3x3 + 4 = 2x3 + x3 + 4, we can apply 
the A.M.-G.M. inequality and get 

2x3 + x3 + 4 ~ 3{/2x3 • x• · 4 = 3 · 2x2 = 6x2 . 

Miscellaneous (for homework) 

31. Prove that if a, b, c > 0, then 1/a + 1/b + 1/c ~ 1/,/0.b + 1/VbC + 1/Fc. 

32. Prove that if a, b, c > 0, then ab/c + ac/b +be/a~ a+ b + c. 

33. Prove that ifa, b, c~O, then ((a+b+c)/3)2 ~ (ab+bc+ca)/3. 
34. Prove that if a, b, c ~ 0, then (ab+ be+ ca) 2 ~ 3abc(a + b + c). 
35. The sum of three positive numbers is six. Prove that the sum of their squares 
is no less than 12. 

36. Prove that if x ~ 0, then 2x + 3/8 ~ 4y'X. 
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37. The sum of two non-negative numbers is 10. What is the maximum and the 
minimum possible value of the sum of their squares? 

38: Prove the A.M.-G.M. inequality for five non-negative numbers; that is, prove 
that if a, b, c, d, and e ;:o: 0, then 

a+b+c+d+e ~bed 
5 ;:o: a e. 

Hint. First, prove the A.M.-G.M. inequality for eight numbers, and then use our 
idea from the proof of the A.M.-G.M. inequality for three numbers. 

§3. Transformations 

Sometimes a lucky transformation can help solve a problem or prove an inequal­
ity immediately. Here is an example: let us return to the inequality x 2 + y2 + z2 ;:o: 
xy+yz+zx from Problem 22. It can be proved as follows. We rewrite the difference 
between parts of the inequality 

x2 + y2 + z2 - xy -yz - zx = ((x -y)2 + (y- z)2 + (z - x)2 )/2 ;:o: 0. 

Actually, the trick is a refinement of the technique of "completing the square", 
often used to solve simple quadratic equations. Here is another example. 

Problem 39. Solve the equation a2 + b2 + c2 + d2 - ab - be - cd - d + 2/5 = 0. 

You might say "This is not an inequality!" Certainly, but, first, we can use the 
same method, and, second, there is an inequality present: 

a2 + b2 + c2 + d2 - ab - be - cd - d + 2/5 

= (a - ~) 2 + ~ ( b - ~) 2 + ~ ( c - ~) 2 + ~ ( d - ~) 2' 

and the solution follows. Indeed, a sum of squares can be equal to zero if and 
only if all the summands are zero. Therefore, we have our answer: d = 4/5, 
c = 3d/4 = 3/5, b = 2c/3 = 2/5, a= b/2 = 1/5. 

Problem 40. a + b = 1. What is the maximum possible value of the product ab? 

Hint. a(l - a)= 1/4 - (1/2 - a)2. 

Problem 41. Prove the inequality (a2 /4) +b2 +c2 ;:o: ab-ac+ 2be for all a, b, and 
c. 

Problem 42. Suppose k, l, and m a.re natural numbers. Prove that 

2k+l + 2k+m + 2l+m :5 2k+l+m+l + 1. 

Problem 43. If a + b + c = 0, prove that ab + be+ ca :::; 0. 

Let us solve Problem 41. We carry everything over to the left side and rewrite: 
(a2 /4) + b2 + c2 - ab+ ac - 2be = (a/2 - b + c)2 ;:o: O. This is true because of our 
"main" inequality. 
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Now we discuss another exceilent idea which has proven quite useful in dealing 
with inequalities which show some symmetry (it is also connected with factoriza­
tion). 

Lemma. If a ;::: b and x ;::: y, then ax+ by ;::: ay +bx. 

Proof. Indeed, ax+ by - ay - bx= (a - b)(x - y) ;::: 0. 

Comment. If, for instance, f is some increasing function, then 

(a - b)(f(a) - f(b)) ;::: 0 

for any numbers a and 1>--this is just a reformulation of the definition of an increas­
ing function. 

This idea can be applied as follows: 

Problem 44. Prove that x6 /y2 + y6 /x2 ;::: x4 + y4 for any x and y. 

Solution. We denote x2 by a, and y2 by b. Then 

xB y6 
- + - - x4 -y4 = a3 /b + b3 /a - a2 - b2 
y2 x2 

= (a - b)a2 + (b- a)b2 =(a_ b) (~ _ ~) = (a - b)(a3 - b3 ) ;::: O. 
b a b a ab 

We emphasize once again that the numbers a - b and a3 - b3 have the same 
sign. 

Problem 45. If x, y > 0, prove that JX2TY + JYI/x ;::: ,fii + JY. 
Problem 46. If a, b, c ;::: 0, prove that 

2(a3 + b3 + c3) ;::: a2b + ab2 + a2c + ac2 + b2c + bc2 . 

Solution. Carry all the terms over to one side and split them into quadruples: 
[a3 + b3 - a2b - ab2] + [b3 + c3 - b2c - bc2] + [a3 + c3 - a2c - ac2]. 

Inside each quadruple the expression can be factored in the following way: 
a3 + b3 - a2b - ab2 =(a - b)(a2 - b2) ;::: O. This completes the proof. 

Problem 47! If al :<:; a2 :<:; .•• :<:;an and bl :<:;ho :<:; ••. :<:; bn, prove that 

where ci, c2, ... , Cn is an arbitrary permutation of numbers bi, b2, ... , bn. 

Miscellaneous 

48. Prove that for any x 

x(x + l)(x+2)(x +3);::: -1. 

49. Prove that for any x, y, and z 

x4 + y4 + z2 + 1 ;::: 2x(xy2 - x + z + 1) . 
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50! Prove that 
1 1 1 9 

l+v.12 + v'3+v'4 + ... + v'99+v'100 > 2· 

51. If x, y ~ 0, prove that ( ,fi + JY) 8 ~ 64xy(x + y)2 . 

For teachers. There exist a number of more difficult inequalities using the 
idea from our Lemma, as well as the inequality from Problem 47 (see [7, 8)). If 
problems of this level a.re not appropriate for your sessions, then we recommend 
giving only the general idea and illustrating it with two or three examples. 

§4. Induction and inequalities 

Often inequalities contain a variable which takes positive integral values, or 
one of the numbers involved is just a disguise covering such a variable (see, for 
instance, Problem 7). By the way, the ability to recognize this kind of variable is 
an important skill to develop, and not only for inequalities. Such "positive integral" 
inequalities can often be proved by induction. 

Problem 52. Prove that if n ~ 3, then 

1 1 1 3 
n+l +n+2+ ... +2,;>5· 

Solution. Base: n = 3. We have 1/4 + 1/5 + 1/6 = 37 /60 > 3/5. 
Let us prove the inductive step, from n = k ton= k + l: 

(k!2 + k!3 + ... + 2k~2) 
( 1 1 1 1 1 1) 

= k+i+k+2+ ... +2k+2k+l +2k+2-k+i 
1 1 1 3 

> k+i + k + 2 + ... + 2k > 5· 

One of the standard schemes in inductive proofs for inequalities is explained 
below. Suppose we are given two series of numbers a1 , a2, ... , an, . . . and bi, b2, 
. . . , bm . . . , and suppose it is known also that 

a) a1 ~ b1 (Base); 
b) ak - ak-1 ~bk - bk-I for any k :5 n (Inductive step). 

Then an~ bn. 

Problem 53. If n is a natural number, prove that 

1 1 1 
1 + V2 + v'3 + ... + ..fa, < 2yn . 

Problem 54. If n is a natural number, prove that 

1 1 1 
i+ 0 + v'3+ ... + v1n>2(v'n+1-1). 

Problem 55. If n is a natural number, prove that 

1 1 1 1 
22+32+42+ ... +li2<1. 
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Problem 55 cannot be solved according to the scheme above. The series an = 
1/22 +1/32 + ... + l/n2 increases monotonically, while the series bn = 1 is constant. 
Thus item b) is not true and we cannot use the scheme. 

What can we do then? Here one of the most amaoing qualities of the method 
of mathematical induction reveals itself. It appears that it is sometimes easier to 
prove a stronger statement, or, as in this case, a more exact inequality. So, 

Solution. We will choose another series bn, namely, bn = (1 - l/n). 

Base. If n = 2, we see that 1/22 < 1 - 1/2. 

Inductive step (according to the scheme!): ak - ak-1 = l/k2 , bk - bk-I = 
l/k(k - l); that is, ak - ak-I < bk - bk-I· Thus, for any natural number n 
we have an < bn = 1 - l/n < I. 

Problem 56. (Bernoulli's inequality) If x 2'. 0 and n is a natural number, prove 
that (l+x)n 2'. l+nx. 

Hint. This problem has a non-inductive solution, which is clear for those ac­
quainted with Newton's binomial theorem (see the chapter "Combinatorics-2"). 
Indeed, 

(l+x)n = 1 + (~)x + (;)x2 + ... + (~)xn, 
and all the summands after the first two are non-negative. Therefore, (1 + x)n 2'. 
1 + G)x = 1 + nx. 

On the other hand, there is another general scheme, which deals with problems 
of this type. It is explained below (using the same notation as in the previous 
scheme): If 

a) a1 2'. b1 (Base); 
b) ak/ak-I 2'. bk/bk-I for all k:::; n (Inductive step), 

then an 2'. bn. This is another corollary of the MM!. 

Problem 57. If n is a natural number, prove that nn > (n + l)n-1. 

Problem 58. If n is a natural number greater than or equal to 4, prove that 
n! 2'. 2n. 

Problem 59. If n is a natural number, prove that 2n 2'. 2n. 

Problem 60. Find all natural numbers n such that 2n 2'. n3. 

Let us discuss the solution to Problem 57. We set an = nn, bn = (n + l)n-1. 

The statement is true for the values n = 1 and n = 2, so the base is proved. To 
prove the inductive step, it suffices to show that 

ak kk bk (k + l)k-I 

ak-1 = (k - l)k-I 2'. bk-I = ~ 

or, equivalently, k2k-2 2'. (k2 - l)k-1; that is, (k2)k-I 2'. (k2 - l)k-1. 
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Miscellaneous 

61. Prove that for any natural number n the inequality 3" > n · 2" holds true. 

62. Which of the two numbers 
2 3 

22" (ten 2's) or 33· (nine 3's) 

is greater? What if there were eight 3's? 

63. The product of the positive numbers a1 , a2, ... , an is equal to 1. Prove that 

Remark. This problem has other, non-inductive solutions. 

64. Prove Bernoulli's inequality (1 + x)" ~ 1 + nx, if x ~ -1 and n ~ 1. 

65. The sum of the positive numbers x1 , x2, ••. , Xn equals 1/2. Prove that 

1 - X1 1 - X2 1 - Xn 1 
1 + X1 • 1 + X2 •••.• 1 + Xn ~ J . 

For teachers. In this section two themes are merging, each of which is important 
enough to take up several sessions. These are "Induction" and "Inequalities". It 
must be noticed that in the theme "Induction" the subtopic "Applying Induction 
to Inequalities" is usually understood by students more easily than other (more 
abstract) ones. We must not make excessive use of this fact, although we can 
create many problems similar to Problems 52-61. 

It is important to give your students more questions which require non-standard 
thinking. Also, you should allow them to seek non-inductive solutions to the prob­
lems. 

§5. Inequalities for everyone 

The problems in this section are listed without any sorting by method of solu­
tion. However, we have tried to arrange them in progressive order of difficulty. 

66. A string was stretched along the equator without gaps. Then it was lengthened 
by 1 centimeter (0.4 inches) and was stretched again along the equator by pulling it 
off the ground in one place. Is it possible for a man to go through the gap created? 

67. Imagine that the Earth is made of dough which is then rolled into a thin 
"sausage" so that it will reach the Sun. What is the thickness of that "sausage"? 
Try to deviate from the right answer by no more than 1000%. 

68. Is it possible to pack the entire population of the Earth and everything that 
was created by humankind inside a cube with an edge 2 miles long? 

69. Imagine that you are standing on the western bank of the Hudson River. Is it 
possible, using only things at hand and common sense, to make a good estimate of 
the length of the radio antenna on one of the buildings of the World Trade Center 
on the other side of the river? 

70. Prove that 100! < 50100. 

71. If n is a natural number, prove that ,/n + 1 - ,/n - 1 > 1/ ,;n. 
72. If 1 > x > y > 0, prove that (x -y)/(1 - xy) < 1. 
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73. If a, b, c, d ~ 0 and c + d ~ a, c + d :5 b, prove that ad + be :5 ab. 
7 4. Does there exist a set of numbers whose sum is 1, and the sum of whose squares 
is less than 0.01? 

75. Suppose a, b, c > 0 and abc = 1. It is known that a+ b + c > l/a + l/b + l/c. 
Prove that exactly one of the numbers a, b, and c is greater than 1. 

76. The numbers x, y belong to the segment [0,1}. Prove that 

_x_+_Y_ <l. 
l+y l+x-

77. Suppose a, b, and care natural numbers such that l/a + l/b + l/c < 1. Prove 
that l/a + l/b + l/c :5 41/42. 

78. If x, y, and z are positive numbers, prove that 

_x_+_Y_+_z_ < 2 . 
x+y y+z z+x -

79. Prove that 

80. Prove that for any x the inequality x4 - x3 + 3x2 - 2x + 2 ~ 0 holds. 

81. The numbers a, b, c, and d belong to the segment [0,1]. Prove that 

(a+b+c+d+ 1)2 ~ 4(a2 + b2 +c2 +d2). 

82. Suppose x and y are greater than 0. We denote the minimum of x, l/y, and 
y + l/x by S. What is the maximum possible value of S? 
83! Suppose a, b, c, and d are positive numbers. Prove that at least one of the 
inequalities 

l)a+b<c+d; 
2) (a+b)cd<ab(c+d); 
3) (a+b)(c+d) <ab+cd 

is not true. 

84! Prove that the three inequalities 

aab1 a1ba ---<---
aa + b1 a1 + ba 

cannot be true simultaneously, if the numbers ai, a2, a3, b1, b2, b3 are positive. 

85! Prove that if x + y + z ~ xyz, then x2 + y2 + z2 ~ xyz. 





CHAPTER 17 

Problems for the Second Year 

You probably have already noticed that some topics from the first year were de­
veloped in the second part; others {like "Parity", "Pigeon Hole Principle", "Games") 
-were not. However, some problems pertaining to these themes were not included 
in the chapters of the first part because they are more difficult. We begin this 
chapter by filling this gap. 

§1. Parity 

1. Prove that the equality l/a + l/b + l/c + l/d + l/e + 1/ f = 1 has no solutions 
in odd natural numbers. 

2. Eight rooks are placed on a chessboard so that none of them attacks another. 
Prove that the number of rooks standing on black squares is even. 

3. Is it possible to place 20 red and blue pawns around a circle in such a way that 
a blue pawn is standing on the point opposite to any red pawn, and no two of the 
blue pawns are neighbors? 

4. Points A and B are chosen on a straight line. Then 1001 other points are chosen 
outside segment AB, and these are colored red and blue. Prove that the sum of the 
distances from A to the red points and from B to the blue points is not equal to 
the sum of the distances from B to the red points and from A to the blue points. 

5. There are ten pairs of cards with the numbers 0, 0, 1, 1, ... , 8, 8, 9, 9 written 
on them. Prove that they cannot be laid in a row so that there are exactly n cards 
between any two cards with equal numbers non them {for all n = 0, 1, ... , 9). 

6. Twenty points, which form a regular 20-gon, are chosen on a circle. Then they 
are split into ten pairs, and the points in each pair are connected by a chord. Prove 
that some pair of these chords have the same length. 

7. A 6 x 6 square is covered by 1 x 2 dominoes without overlapping. Prove that 
the square can be cut along a single line parallel to its sides so that none of the 
dominoes will be damaged. 

8. A snail began crawling about a plane, starting from point 0 with constant 
speed, making a 60° turn every half hour. Prove that it can return to point 0 only 
after a whole number of hours. 

9! We have an audio tape recorder and n reels with tapes which have red leaders 
on the outside and green leaders on the inside. Find all n such that using only one 
empty reel we can reach the situation when all the tapes return to their initial reels 
with their green leaders on the outside. 

187 
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§2. The Pigeon Hole Principle 

10. A line is colored with 11 colors. Prove that one can find two identically colored 
points an integer number of inches apart. 

11. There are seven lines on the plane. Prove that some pair of them forms an 
angle less than 26°. 

12. Each box of a 5 x 41 table is colored white or black. Prove that we can choose 
three columns and three rows such that all nine boxes on their intersections are the 
same color. 

13! Each point on the plane is colored using a) 2; b) 3; c) 100 colors. Prove that 
we can find a rectangle with all its vertices the same color. 

14. Six friends decided to visit seven movie theaters during the weekend. Shows 
started at 9 am, 10 am, 11 am, . . . , 7 pm. Every hour two of them went to some 
theater, and all the others to another theater. By the end of the day each of them 
had visited all seven theaters. Prove that for every theater there was a show which 
was not attended by any of the friends. 

15. What is the largest number of spiders which can amicably share the edges of 
a cube with an edge equal to 1 meter? A spider will tolerate a neighbor only at a 
distance of a) 1 meter; b) 1.1 meter (traveling along the edges). 

16. Seven vertices are chosen in each of two congruent regular 16-gons. Prove 
that these polygons can be placed one atop another in such a way that at least 
four chosen vertices of one polygon coincide with some of the chosen vertices of the 
other one. 

17. A set of ten two-digit numbers is given. Prove that one can choose two disjoint 
subsets of these numbers with equal sums. 

18. Twenty-five points are given on the plane. It is known that among any three 
of them one can choose two less than 1 inch apart. Prove that there are 13 points 
among them which lie inside a circle of radius l. 

19. Six points are chosen inside a 3 x 4 rectangle. Prove that a pair of them can 
be chosen such that the distance between them is at most v'5. 
20. Set A contains natural numbers, and it is known that there is an element of A 
among any 100 consecutive natural numbers. Prove that one can find four different 
numbers a, b, c, and d in set A such that a + b = c + d. 

21. Ninety-nine 2 x 2 squares were cut from a sheet of graph paper with dimensions 
29 x 29. Prove that it is possible to cut out another small 2 x 2 square. 

22. A 10 x 10 table is covered by fifty-five 2 x 2 squares. Prove that one of them 
can be removed so that all the others will still cover the table. 

23! A chess grand master plays at least one game per day but no more than 
12 games per week (Sunday through Saturday). Prove that one can find several 
consecutive days during the year when the maestro played exactly 20 games. 

24. Ten disjoint segments colored red are given within a segment 10 inches long. 
It is known that no two red points are exactly 1 inch apart. Prove that the sum of 
the lengths of the red segments is no more than 5 inches. 

25. Inside a 1 x 1 square, 101 points are given. Prove that some three of them 
form a triangle with area no more than 0.01. 
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26. Several circles, with the sum of their radii equal to 3/5, are placed within a 
1 x 1 square. Prove that there exists a line parallel to a side of the square, which 
intersects at least two of these circles. 

27. Several chords are drawn in a circle of radius 1, and each diameter of the circle 
intersects no more than four of them. Prove that the sum of their lengths does not 
exceed 13. 

28! There are 100 old (non-digital) watches in an antique shop, all running but not 
necessarily on time. Prove that at some moment of time the sum of the distances 
from the center of the shop to the centers of the watches will be less than the sum 
of the distances from the center of the shop to the ends of the hour hands of the 
watches. What if some of them are running fast or slow? 

§3. Games 

In all the problems in this section it is supposed that there are two players 
making their moves in turn, one after another. Unless otherwise specified, you 
must determine who wins (the player who makes the first move, or the other one). 

29. A pawn is placed in each of the three leftmost squares of a 1 x 20 table. A move 
consists of shifting one pawn to any of the free squares to the right of it, without 
jumping over any other pawns. The player who cannot make a move loses. 

30. A pawn is placed in each of the three leftmost squares of a 1 x 20 table. A 
move consists of shifting any of the pawns to the neighboring square on the right if 
it is free. If this neighboring square is occupied but the next one to the right is not, 
the player can shift the pawn to that free square. The player who cannot make a 
move loses. 

31. The number 1234 is written on a blackboard. A move consists of subtracting 
some non-zero digit of the written number from this number (the difference is to 
be written on the blackboard instead of the old number). The player who writes 
the number zero wins. 

32. The numbers 1 through 100 are written in a row. A move consists of inserting 
one of the signs "+", "-", or "x" in a free space between any two neighboring 
numbers. The first player wins if the final result is odd, and loses otherwise. 

33. The numbers 1, 2, 3, ... , 20, 21 are written in a row on a blackboard. A move 
consists of crossing out one of the numbers not yet crossed out. The game ends 
when there are only two numbers on the blackboard. If the sum of these numbers 
is divisible by 5, then the first player wins; otherwise, the first player loses. 

34. A table with dimensions a) 10 x 10; b) 9 x 9 is given. A move consists of 
filling any free box with a plus or minus sign (a player may choose either sign at 
each turn). The player whose move creates three consecutive identical signs on a 
straight line (horizontal, vertical, or diagonal) wins the game. 

35. There are two heaps of candies on a table: 22 candies in one of them, and 
23 in the other. A move consists of either eating two candies from one heap, or 
of moving one candy from one heap to the other. The player who cannot make a 
move wins the game. 

36. The first player writes on a blackboard one of the digits 6, 7, 8, 9. Each next 
move consists of writing one of the same digits to the right of the number on the 
blackboard. The game ends after a) the 10th; b) the 12th move (note that the 10th 
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move, for instance, is the 5th move made by the second player). The first player 
wins if the resulting number is not divisible by 9, and loses otherwise. 

37. Two players play a game on an infinite sheet of graph paper. The first player 
puts a cross in some square. In each of his next moves he must put a cross in any 
free square which shares a common side with a square which already has a cross. 
The second player puts three crosses in any free squares. Prove that no matter 
how the first player plays, the second player can "stalemate" him-that is, create 
a position where the first player has no permitted moves. 

38. There are 1001 matches in a pile. A move consists of throwing away p" matches 
from the pile, where p is any prime number, and n = 0, 1, 2, .... The player who 
takes the last match wins the game. 

39. There are 1991 nails in a plank. A move consists of connecting two of them, 
which are not yet connected with each other, by a wire. If after a move there is a 
circuit, then the player who made that move a) wins the game; b) loses the game. 

40. A move consists of coloring black one or more boxes which form a square in a 
given table with dimensions a) 19 x 91; b) 19 x 92. It is not allowed to color any 
box twice. The player who colors the last box wins the game. 

41: A 30 x 45 sheet of graph paper is given. A move consists of making a cut along 
a line connecting two neighboring nodes of the lattice. The first player begins by 
cutting from the edge of the paper. Any cut must begin where the last cut ended. 
The player after whose move the sheet falls apart wins the game. 

42! A king, when it is his turn, can put two crosses into any two free squares on an 
infinite sheet of graph paper. His secretary, when it is his move, can put a naught 
into any free square. Is it possible for the king to get 100 crosses in a row (vertically 
or horizontally)? 

§4. Construction problems 

43. A traveler checked into a hotel having only a gold chain with 7 links. The 
owner requires rent for the room of one golden link per day. What is the minimum 
number of links of the chain which must be opened so that the traveler will be able 
to pay exactly the required rent every day? 

44. Is it possible to write 10 numbers in a row so that the sum of any five consecutive 
numbers is positive, and the sum of any seven consecutive numbers is negative? 

45. Find a ten-digit number such that the first digit is equal to the number of zeros 
in its decimal representation, the second digit is equal to the number of ones in the 
representation, et cetera, and the tenth digit is equal to the number of nines in the 
representation. 

46. Ali-Baba wants to get into Sesame cave. There is a barrel in front of the 
entrance. It has four holes with a jar inside each of them, and there is a herring in 
every jar. A herring can sit in ajar with its head up or down. Ali-Baba can stick his 
hands into any two holes, and, after examining the positions of the herrings, change 
their positions in an arbitrary manner. After this operation the barrel begins to 
rotate, and after it stops Ali-Baba cannot tell one hole from another. The Sesame 
cave will open if and only if all four herrings are in the same position. How must 
Ali-Baba act to get into the cave? 
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A B 

FIGURE 124 

4 7. Find a coloring of a sheet of graph paper using 5 colors such that the boxes in 
any figure of type A (see Figure 124) are always colored differently, but such that 
this is not true for any figure of type B. 

48. Draw a figure that cannot cover a semicircle of radius 1, but such that it is 
possible to cover a circle of radius 1 with two copies of it (the copies may overlap). 

49. Choose 6 points on the plane in such a way that any 3 of them lie at the 
vertices of an isosceles triangle. 

50. Draw 11 disjoint squares (that is, not having common interior points) on the 
plane in such a way that they cannot be properly colored using 3 colors. A coloring 
of a set of figures is called proper if any two figures having more than one point of 
their boundary in common are colored differently. 
51. Cover the plane with non-overlapping squares such that only two of them are 
the same size. 
52. Draw a polygon and a point on the plane in such a way that none of the 
polygon's sides is completely visible from the point (that is, for any side of the 
polygon some part of it is obscured by other sides of the polygon if the observer's 
eye is placed at the chosen point). There are two cases: a) the point is inside the 
polygon; b) the point is outside the polygon. 
53: Choose 7 points on the plane in such a way that among any three of them 
there are 2 points 1 inch apart. 

§5. Geometry 

Set 1. Geometric inequalities 

In the chapter "Geometry" we got acquainted with some geometric inequalities 
and problems using them. In this set we collect several problems on this topic 
which are more complicated and less standard. 
54. Prove that the circles constructed on two sides of a triangle as diameters cover 
the entire triangle. 
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55. Prove that the circles constructed on the four sides of a quadrilateral as diam­
eters cover the entire quadrilateral. 

56. Prove that a convex polygon cannot have more than three acute angles. 

57. Prove that in a convex polygon the sum of any two angles is greater than the 
difference of any other two angles. 

58. A circle of radius 1 and five straight lines intersecting it are given on the plane. 
Point X is known to be 11.1 inches from the center of the circle. Prove that if X 
is consecutively reflected in all five lines, then the resulting point cannot lie inside 
the circle. 

59. An astronomer observed 50 stars such that the sum of all the pairwise distances 
between them is S. A cloud obscured 25 of the stars. Prove that the sum of the 
pairwise distances between the visible stars is less than 8/2. 
60. A 1 x 1 square is cut into several rectangles. For each of them we calculate the 
ratio of the smaller side to the bigger one. Prove that the sum of these ratios does 
not exceed 1. 

61. The vertices of triangle ABC lie on the nodes of a sheet of graph paper 
(whose boxes have sides of unit length). It is known that IABI > IACI. Prove that 
IABI - IACI > 1/p, where p is the perimeter of triangle ABC. 

Set 2. Combinatorial geometry 

Here are some problems in so-called "combinatorial geometry". This branch 
of geometry studies various combinatorial properties of arrangements of geometric 
figures, like points, lines, polygons, etc., on the plane (and in space). Convexity is 
usually included in this theme as well. 

62. There are 200 points chosen on segment AB in such a way that the set is 
symmetric with respect to the midpoint of the segment. One hundred points are 
colored red, the others blue. Prove that the sum of the distances from A to the red 
points is equal to the sum of the distances from B to the blue points. 

63. Five points are given on the plane such that no three of them lie on the 
same straight line. Prove that some four of them lie on the vertices of a convex 
quadrilateral. 

64. A 2 x 2 square is cut into several rectangles. Prove that we can color some of 
them black so that the projection of the colored figures on one of the square's sides 
has length no greater than 1, while the projection on the other side has length no 
less than 1. 

65. Six dimes lie on a table, forming a closed chain. A seventh dime rolls along the 
outer side of the chain without "sliding", touching all six dimes on its way. How 
many full revolutions will it make before it first returns to its initial position? 

66. An 8-segment closed broken line whose vertices coincide with the vertices of a 
cube is given in space. Prove that one of the segments coincides with one of the 
edges of the cube. 

67! Several segments are given on a straight line, and it is known that any two of 
them intersect. Prove that some point on the line belongs to all the segments. 

68. Several segments cover the segment [O; 1] = {x : 0 :::; x :::; 1}. Prove that you 
can choose some of them so that they are all disjoint, and the sum of their lengths 
is at least 1/2. 
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69! There are several segments lying inside the segment [O; 1] and covering it. 
Prove that their left halves cover at least one half of the segment [O; 1 J. 

§6. Integers 

70. Find all natural numbers equal to the sum of the factorials of their digits. 

71. The number abc is prime. Prove that b2 - 4ac cannot be a perfect square. 

72. The fourth power of a natural number is written with the digits 0, 1, 4, 6, 7, 
9 in some order. Find this number. 

73. What is the smallest natural number of the form 111 ... 11 which is divisible 
by 333 ... 33 (one hundred 3 's)? 

74. Prove that among any 39 consecutive natural numbers one can find a number, 
the sum of whose digits is divisible by 11. 

75. Do there exist two different seven-digit numbers, each written with digits 1, 2, 
... , 7 without repetitions, and such that one of them is divisible by the other? 

76. The difference of the numbers abcdef and fdebca is divisible by 271. Prove 
that b = d and c = e. 
77. Does there exist a two-digit number whose square ends in the same two digits, 
but in the reverse order? 

78. Integers a, b, and c are given, and it is known that ax2 + bx+ c is divisible by 
5 for any integer x. Prove that a, b, and c are themselves divisible by 5. 

79. Find all natural numbers n such that the number nn + 1 is prime and has no 
more than 19 digits. 

80! The natural number y was obtalned from the number x by rearranging its 
digits. It is known that x + y = 10200 . Prove that x is divisible by 50. 

81: Prove that the number aOOO ... OOb cannot be a perfect square. 

§7. Optimization problems 

Set 1. The principle of the extreme 

The main idea of the solutions to the problems of this set is a consideration of 
an "extreme" (in some sense) object: the largest number, a pair of points with the 
greatest distance between them, the smallest angle, et cetera. 

82. a) Numbers are placed on the vertices of a 100-gon in snch a way that each of 
them equals the arithmetic mean of its neighbors. Prove that all the numbers are 
equal. 

b) Prove the same fact if the numbers are placed on the squares of a chessboard 
and it is known that each of them does not exceed the arithmetic mean of its 
neighbors. 

The solution to Problem 82a) is rather simple. Let us consider the smallest 
number. It is clear that its neighbors must coincide with it-otherwise their arith­
metic mean would be greater than the smallest number. Therefore, their neighbors 
must be equal to them too, and so on. This shows that all the numbers are equal. 

83. Ten points are given on the plane. Prove that one can find 5 disjoint segments 
whose endpoints coincide with the given points. 
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84. Is it possible to draw several segments on the plane so that every endpoint of 
each of them lies within another of the drawn segments? 

85. There are several coins lying on the table of a money-changer so that they 
do not touch each other. An armless thief wants to push one of them, using his 
nose, to the edge of the table, where he can pick it up. The coin being moved may 
never touch any other coin (lest the money-changer hears the sound). Is this always 
possible? 

86. a) Several identical coins lie on a table. Prove that one of the coins touches no 
more than three others. 

b) Several coins of different sizes lie on a table. Prove that one of the coins 
touches no more than five others. 

87. There are several airports in a country, and it is known that the distances 
between them are all different. An airplane takes off from each airport and flies to 
the closest airport. Prove that there will be no more than five of the planes at each 
airport after they all have landed. 

88. In outer space there are 1991 asteroids, and an astronomer lives on each of 
them. All the distances between the asteroids are different. Each astronomer is 
observing the closest asteroid to him or her. Prove that there is an asteroid which 
is not being observed. 

Set 2. Semi-invariant 

The idea of a "semi-invariant" is a quite natural extension of the idea of an 
invariant. We will call some quantity a "semi-invariant" if this quantity changes 
monotonically during some transformation process. A typical semi-invariant is the 
age of a person, which unfortunately can only increase as time passes. 

89. There are several cities in a certain kingdom. An obnoxious citizen is exiled 
from city A to city B, which is the farthest city in the kingdom from A. After a 
while, he is again exiled from city B to the farthest city from it, which happens to 
be different from A. Prove that, if his exiles continue the same way, he will never 
return to city A. 

90. One hundred coins lie in a row, arranged head, ta.ii, head, ta.ii, .... A move 
consists of turning over several coins lying in succession. What is the minimum 
number of moves necessary to reach the situation when all the coins lie with heads 
up? 

91. At midnight a virus was placed into a colony of 1984 bacteria. Each second 
each virus destroys one bacterium, after which all the bacteria and viruses divide 
in two. Prove that eventually all the bacteria will be destroyed, and determine the 
exact time of this event. 

92. One real number is written in each box of a rectangle table. It is allowed to 
change the sign of all the numbers in any row or column. Prove that, using these 
operations, one can make the sum of the numbers in the table non-negative. 

93! In a given graph with n vertices the degree of each vertex does not exceed five. 
Prove that the vertices can be colored using three colors in such a way that there 
are no more than n/2 edges with endpoints of the same color. 

94 ! Real numbers are written along a circle. If some four successive numbers a, b, 
c, and d satisfy the inequality (a - d)(b - c) > 0, then it is permitted to transpose 
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the numbers b and c. Prove that it is impossible to perform infinitely many such 
permutations. 

§8. Discrete continuity 

Here we gather problems whose solutions are based mostly on one very simple 
idea, which can be illustrated by the following example. There is a flea jumping 
along the integers on a number line. It is known that at each jump the flea moves 
no further than to a neighboring number. If the flea was originally sitting on a 
negative number, and it ends up on a positive number, then at some moment the 
flea was on zero. 
95. There are 100 points chosen on the plane. Prove that there exists a straight 
line such that exactly fifty of the points lie on one side of it. 

Let us discuss the solution to Problem 95. First, we draw all straight lines 
passing through pairs of points in our 100-element set. Second, we find a line which 
is parallel to none of these, and such that all the points are to one side of it. Now 
we move this line toward the points so it is always parallel to its initial position, 
and observe how the number of the points behind the line changes. It is quite 
obvious that we cannot pass through two points simultaneously. Thus we have the 
same sort of "discrete continuity" as in the flea example. Since we started with 
zero chosen points to one side of the line and will eventually have all 100 points to 
that side of the line, then, clearly, at some moment the number of points behind 
the line will be equal to 50, and we will have the required result. 
96. One hundred black balls and one hundred red balls are laid in a row so that 
the leftmost and the rightmost balls are black. Prove that it is possible to choose 
several successive balls {but not all of them!) from the left side of the row in such 
a way that there are equally many red and black balls among them. 
97. The soccer match between the New York Centaurs and Liverpool ended with 
the score 8:5. Prove that there was a moment during the match when the Centaurs 
were going to score the same number of points as Liverpool already had at that 
moment. 
98. Prove that you can rearrange the digits of any six-digit number in such a way 
that the difference between the sum of the first three and the sum of the last three 
is between 0 and 9. 
99. The numbers + 1 and -1 are placed in the squares of an 8 x 8 board in such a 
way that the sum of all the numbers equals zero. Prove that the board can be cut 
into two parts so that the sum of the numbers in each part is zero. 
100. The faces of eight unit cubes are colored black and white so that there are 
equally many black and white faces. Prove that one can form a 2 x 2 x 2 cube from 
the unit cubes in such a way that there are equally many white and black faces on 
its surface. 
101. The numbers + 1 and -1 are placed in some boxes of a 50 x 50 square, and it 
is known that the absolute value of their sum is not greater than 100. Prove that 
there is a 25 x 25 square such that the absolute value of the sum of the numbers 
within it is not greater than 25. 
102: The sequence (a,,) is such that a 1 = 1, and an+! - an is always either 0 or 1. 
It is also known that an = n/1000 for some natural n. Prove that am = m/500 for 
some natural m. 
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§9. Power questions 

This section is devoted to so-called "power questions". Each of these is just 
a chain of several simpler facts (lemmas) which add up to the proof of a rather 
difficult problem. First we state the required result, then the lemmas you must 
prove in order to solve the problem. Such problems are very useful for homework, 
and some of them can be discussed at a special session. 

103. Equilateral triangles on graph paper. Prove that there is no equilateral 
triangle with its vertices on the lattice points of graph paper. 

a) Prove that for any triangle with vertices on the lattice points of graph paper, 
its doubled area is an integer. 

b) Find the length of the altitude of an equilateral triangle with side a and 
calculate its area. 

c) Prove that the square of the length of any segment with its endpoints on 
two lattice points is an integer. 

d) Prove that if there exists an equilateral triangle with its vertices on three 
lattice points, then J3 can be represented as a ratio of two natural numbers. 

e) Prove that if the square of a fraction, whose numerator and denominator are 
relatively prime, is an integer, then the denominator is I. 

f) Now prove the statement of the problem. 

104. Pick's formula. Prove that the area of a polygon with vertices on the lattice 
points of a piece of graph paper equals a+ b/2 -1, where a is the number of lattice 
points inside the polygon, and b is the number of lattice points on its boundary. 

a) Prove Pick's formula for a rectangle with its sides on the lines of the grid. 
b) Prove Pick's formula for a right triangle with its legs on the lines of the grid. 
c) Prove Pick's formula for a polygon which can be dissected into two polygons 

satisfying Pick 's formula. 
d) Assume that we have a polygon for which Pick's formula is true, and this 

polygon is dissected into two smaller polygons. Prove that if Pick's formula is true 
for one of these smaller polygons, then it is true for the other one. 

e) Prove that Pick's formula is true for any triangle with its vertices on the 
lattice points of the grid. 

f)" Prove that any polygon can be dissected into triangles by a set of its disjoint 
diagonals (see Problem 31 in the chapter "Induction"). 

g) Prove Pick's formula in the general case. 

105. Bolyai-Gervin's theorem. Two polygons with equal areas are given. Prove 
that the first polygon can be dissected into several parts which can be rearranged 
to form the second polygon. We will call two figures that can be so transformed 
into each other "equiform". 

a) Prove that two parallelograms with a common base and equal altitudes are 
equiform. 

b) Prove that if polygons P1 and P2 are equiform, and it is also known that P2 
and P3 are equiform, then P1 and P3 are equiform too. 

c) Prove that two parallelograms with equal areas are equiform. 
d) Prove that every triangle is equiform to some parallelogram. 
e) Prove that every triangle is equiform to a rectangle, one of whose sides has 

length I. 
f) Prove Bolyai-Gervin's theorem. 
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106. Divisibility of Fibonacci numbers. Prove that if Fn (the nth Fibonacci 
number) is prime, then either n = 4 or n is prime. 

a) Prove (by induction on n) that for any naturaJ numbers m and n 

Fm+n = Fm+1Fn + FmFn-1 · 

b) Prove that Fkm is divisible by Fm (use induction on k). 
c) Prove that if n is divisible by m > 2, then Fn is composite. 
d) Prove that every composite number different from 4 has a proper divisor 

greater than 2, and complete the solution to the problem. 

107. Helly's theorem. There are severaJ convex sets on the plane, and it is 
known that any three of them have a common point. Prove that aJl these sets have 
a common point. 

a) Four points marked with the sets of numbers {1, 2, 3}, {1, 2,4}, {2, 3, 4}, and 
{1, 3, 4} are given on the plane. It is aJlowed to connect any two points marked with 
some sets of numbers by a segment, and mark aJl the points of the segment with 
the numbers which are common to both ends of this segment. Prove that using 
these operations one can find a point which is marked with aJl four numbers 1, 2, 
3, and 4. 

b) Prove that the intersection of convex sets is convex. 
c) Prove Helly's theorem for four convex sets A" A2, A3, and A4 ; remember 

to assume that any three of these have a common point. 
d) Prove the generaJ case of Helly's theorem by induction on the number of 

convex sets. 

§10. Miscellaneous 

108. The boxes of a 9 x 9 table are colored using two colors. It is aJlowed to choose 
any 3 x 1 rectangle and color aJl its boxes with the color that there had been the 
most of in this rectangle before. Prove that using these operations one can reach 
the situation where aJl the boxes are the same color. 

109. Is it possible for the six differences between some set of four numbers to be 
equaJ to 2, 2, 3, 4, 5, and 6? 

110. There are 1970 people living in a village. Each day some of them exchange a 
dime for two nickels with other people in the village. Is it possible that during one 
week each of the people of the village has given away exactly 10 coins in the course 
of the exchanges? 

111. Pete, Paul, and Mary were solving problems from a problem book. Each 
solved exactly 60 problems, but they solved only 100 problems aJtogether. We will 
caJl a problem "easy" if it was solved by aJl three of them, and "difficult" if it was 
solved by only one of them. Prove that the number of difficult problems exceeds 
the number of easy problems by 20. 

112. It is known that the square of the number x has the following decimaJ rep­
resentation: 0.999 ... 99 ... (one hundred 9's after the decimaJ point). Prove that 
the number x itself has a decimaJ representation of the same type (but, perhaps, 
with another number of 9's). 

113. Forty-nine rooks are placed on a 100 x 100 chessboard, and a king is placed in 
the lower left corner of the board. The king makes moves towards the upper right 
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corner, and after each of its moves one of the rooks makes a move too. Prove that 
at some moment the king will be under attack by one of the rooks. 

114. In the numeral 0.1234567891011 ... all the natural numbers are written in 
succession after the decimal point. Is this fraction periodic? 

115. Three players play table tennis, and the one of them who does not participate 
in a particular game plays the winner in the next game. By the end of the day the 
first player has played 10 games, and the second has played 21. How many games 
has the third player played? 

116. The numbers x and y are such that ,/X - ..;Y = 10. Prove that x - 2y < 200. 

117. In a 10 x 10 table all the boxes in the left half of the table are colored black, 
and the others are colored white. It is permitted to change the color of all the boxes 
in a row or in a column. Is it possible to achieve the standard chess coloring of the 
table, using only these operations? 

118. A children's game has several pieces of railroad track of two types (see Figure 
125) arranged in a closed loop in such a way that the direction of a train's movement 
coincides with the directions of the arrows. One of the type 1 parts was broken and 
replaced with a spare part of type 2. Prove that now it is impossible to arrange all 
the parts in a closed loop. 

type 1 type2 

FIGURE 125 

119. A town is laid out in the form of a convex polygon, whose diagonals are the 
streets. Their intersections and the polygon's vertices are the crossings. There are 
tram routes along some of the streets, and it is known that for every crossing there 
is at least one route passing through it. Prove that one can reach any crossing from 
any other, changing routes no more than twice. 

120. There are 100, 200, and 300 students respectively in three towns. Where must 
a school be built to minimize the overall distance the students walk every day? 

121. Is it possible to cut a convex 17-gon into 14 triangles? 

122. There are three frogs sitting on three vertices of a square. They play leapfrog, 
jumping one over another. If frog A jumps over frog B, then A lands at point A' 
such that B is the midpoint of segment AA'. Is it possible for one of them to jump 
onto the fourth vertex of the square? 

123. Twenty-five elephants stand in a row in a circus arena, and each of them 
weighs an integer number of kilograms. It is known that if you add the weight of 
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any of them (except the rightmost one) and half the weight of its neighbor to the 
right, then the result is 6 tons. Find the weights of the elephants. 
124. A billiard table with dimensions 101x200 has pockets only at the four corners. 
A ball rolls out of the table's corner along its angle bisector and moves on, reflecting 
from the sides of the table. Will it ever roll into a pocket again? 
125. The diagonals of a convex 13-gon cut it into several regions. What is the 
maximum number of sides of such a region? 

126. Prove that if the natural number n is greater than 1, then the number 
1+1/2 + 1/3 + 1/4 + ... + 1/n cannot be an integer. 
127. What is the maximum possible radius of a circle which lies on a chessboard 
and does not intersect any white squares (except at their corners)? 
128. A round socket has 6 holes uniformly spread along its border. We also have 
a similar plug with 6 pins. The holes in the socket are numbered with the numbers 
1 through 6 in some order; the same is done with the pins on the plug. Prove that 
the plug can be plugged into the socket so that none of the connectors will go into 
the hole with the same number. Is this true if there are 7 holes and 7 connectors? 
129. Two natural numbers m and n have natural divisors a1, ••• , a, and b1 , ... , 

bq respectively, and it is known that 

Prove that m = n. 

a1 + ... + ap = b1 + ... + bq, 
1 1 1 1 
~+ ... +;;;=bi+ ... +b.. 

130. In a certain country the following coins are in circulation: 1 cent, 2 cents, 5 
cents, 10 cents, 20 cents, 50 cents, and 1 dollar. It is known that you can pay A 
cents with B coins. Prove that you can pay B dollars with A coins. 
131. Is it possible to place one hundred natural numbers around a circle so that 
the product of any two neighboring numbers is a perfect square? 

132. There are n physicists and n chemists sitting at a round table. It is known 
that some of them always lie, and others always tell the truth. It is also known 
that the number of physicist liars is equal to the number of chemist liars. Each of 
these people said: "My neighbor to the right is a chemist." Prove that n is even. 

133. The natural numbers a and bare such that a2 +ab+ 1 is divisible by b2 +ba+ l. 
Prove that a = b. 

134. Each of two mathematical geniuses is given his or her own secret natural 
number, and they both know that these numbers differ by l. They ask each other 
in turn: "Do you know my number yet?" Prove that eventually one of them will 
answer the question affirmatively. 
135. One hundred integers are written around a circle, and it is known that their 
sum is l. We will call a subset of several successive numbers a "chain". Find the 
number of chains whose members have a positive sum. 
136. In a chess tournament each of the players gained exactly half of their points 
in games with the players occupying the last three places in the tournament. How 
many players took part in the tournament? 

137. The numbers a, b, and care such that a+b+c = 7 and 1/(a+b) + 1/(b+c) + 
1/(c+ a)= 7/10. Find the value of the expression a/(b+ c) + b/(a+ c) + c/(a+ b). 
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138! One hundred and nineteen people live in a building with 120 apartments. An 
apartment is called "overpopulated" if there are more than 15 people living in it. 
Each day all the tenants of some overpopulated apartment have a quarrel, and they 
all move to different apartments in the same building. Is it true that eventually 
none of the apartments will be overpopulated? 

139! There are several cars on a circular track, and there is enough gas in all their 
tanks taken together to drive one car around the track. Prove that at least one of 
the cars can drive around the track by taking gas from other cars on its way. 

140! The number sequence 1, 9, 8, 2, . . . satisfies the following rule: each element 
of the sequence, starting from the fifth, is equal to the last digit of the sum of the 
previous four members. Will we ever meet four successive members equal to 3, O, 
4, 4 in this sequence? 

141: There are 25 stones in a heap. The heap is divided into two parts, then one of 
the parts is divided in two again, et cetera, until we have 25 separate stones. After 
each division of one of the heaps into two smaller heaps we write the product of 
the numbers of stones in these two heaps on a blackboard. Prove that at the end 
the sum of all the numbers on the blackboard is 300. 

142! For any boy in a certain village all the girls who are acquainted with him 
are acquainted with each other. Also, for each girl there are more boys than girls 
among her acquaintances. Prove that the number of boys in the village is greater 
than or equal to the number of girls. 

143: A snail crawled along a straight line for 6 minutes while several people watched 
its progress. Each of these people watched the snail for 1 minute, and during this 
minute the snail crawled exactly 1 foot. It is also known that the snail was always 
watched by at least one person. What is the maximum possible distance the snail 
could crawl during these 6 minutes? 



APPENDIX A 

Mathematical Contests 

§ 1. Introduction 

The Sphin:r; . . . lay crouched on the top of a rock, and arrested all travellers 

who c.a.me that way, proposing to them a riddle, with the condition that those who 

could solve it should pass safe, but those who fat.led should be killed. Not one had 

yet succeeded in solving it, and all had been slain. 

Oedipus was not daunted by these alann.ing ace.aunts, but boldly advanced 

to the trial. The Sphinx asked him, "What animal is that which in the morning 

goes on four feet, at noon on two, and in the evening upon three?" 

From "Mythology" by Thomas Bulfinch. A modern abridg­

ment by F',dmund Fuller. Dell Publishing, New York, 1959. 

It is very likely that the riddle of the Sphinx was the very first olympiad problem 
in the full meaning of the word. As everybody knows, the outcome of that ancient 
contest was quite fortunate for Oedipus. 

Contemporary mathematical contests do not require human sacrifice, and many 
students gladly participate in a variety of them. This unique sort of competition 
combines mathematics, sports, and a test of psychological endurance. Some contes­
tants allow themselves to get involved to such a degree that they become olympiad 
"professionals" (which is not always good for their real mathematical education). 
We, nevertheless, hope that the reader will find the contests discussed in this chap­
ter interesting, useful, and instructive. 

For teachers. 1. Remember that students, especially younger ones, like to turn 
every serious matter into a game, sport, or recreation. At first, this is acceptable, 
and you can use this as one of the ways to get them acquainted with new areas of 
mathematics. However, you may want a more serious tone for the main activity of 
your seminar. 

2. Problems for mathematical contests can be found in any chapter of this 
book and in many others. Use the list of references (try [44], for example). 

§2. Mathematical battle 

This is one of the most popular mathematical contests in Lenigrad (and in Rus­
sia). It was invented in the middle of the 1960's by losif Verebeichik, then a teacher 
of mathematics in one of the Leningrad schools. This is a team competition which, 
remarkably, unites mathematics, sports, team spirit, and theatrical performance. 

201 
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We will briefly explain the basic rules. Each of two teams receives a list of 
problems prepared by the jury (the problems are the same for both teams). They 
are given a certain amount of time (which may vary from 30 minutes to a week) 
to solve these problems. After the time expires, the teams' members and the jury 
gather in some auditorium (with a big blackboard and a supply of chalk), and the 
battle begins. 

First., through a "captains' contest", the jury determines which team goes first. 
The two team captains are given a simple question which must be answered on 
the spot, on the blackboard, and without consulting the other team members. For 
example, is the number 7999 prime? Or, there are seven rubber rings in space; is 
it possible that each of these is linked with exactly three other rings? 

As soon as one of the captains gives an answer the captain's contest is over. 
If the answer is correct, then the team whose captain has come up with it wins. 
Otherwise, the other team wins. 

The victorious team decides which of the teams-say, team A-will "issue a 
challenge", and after that the "challenge" itself follows. That means that team A 
declares that they want to hear team B's solution to some problem from the list. 
Team B can accept the challenge by sending one of its members to the blackboard 
to act as "storyteller" (that is, to explain the solution). Team B can also reject the 
challenge. 

In the former case, team A sends one of its members to act as an opponent to 
the storyteller. His or her responsibility is to check the solution, reveal its weak 
points, or, perhaps, even prove it wrong. 

In the latter case team A must prove that they challenged team B in a correct 
manner. This means that they must delegate a "storyteller" , who gives a correct 
solution to the problem. As before, team B sends an opponent who tries to disprove 
the solution or at least find some minor errors or unproved points. 

In all these cases but one the next challenge must be made by the other team. 
The exception occurs if after checking the correctness of the challenge (see the 
previous paragraph) the jury decides that team A did not provide a correct solution 
to the problem (the jury always has the right to check the solution, ask questions, et 
cetera). In this case, team A is to be fined, and they must also repeat the challenge 
(for another problem, of course). 

After the discussion of a solution is finished, the jury distributes the points 
(each problem is worth 12 points). Points may be granted to the opponent even if 
the solution of the storyteller was correct; for example, if there were some minor 
errors which were pointed out by the opponent and then corrected by the storyteller. 
The jury is also permitted to award points to itself. 

If a major error found by the opponent (or by the jury) was not corrected 
by the storyteller within some standard amount of time (usually 1 minute), the 
explanation terminates, and the jury can decide to hear the other side. When this 
extra discussion is finished the jury distributes the points. 

If one of the teams runs out of problems they have solved and is not willing to 
take chances by challenging the other team for an unsolved problem, then they can 
forfeit their right to challenge. In this case, the other team can give the rest of the 
solutions they have at that moment. These explanations are carried out as usual, 
with opponents present. 

Many other minor rules and restrictions have been added to the basic code over 
30 years of mathematical battles. Among them are, for instance: 
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1) the setting of a fine for an "incorrect chaJlenge" at 6 points; 
2) the restriction that no one of the contestants can appear at the blackboard 

more than x times (the captain's contest does not count), where xis some naturaJ 
number announced when the list of problems is given. UsuaJly, x = 2 or 3. 

3) a rule that only the captain or the temporary deputy (in case the captain 
acts as storyteller or opponent, or is absent) can taJk to the jury. 

The last and the most revered law of the mathematicaJ battle reads that in any 
uncertain situation the jury rules-it is both the judiciaJ and legislative system of 
the mathematicaJ battle. 

The organization of a battle requires certain skills and some experience: for 
example, it is a very standard opening gambit (like the e2-e4 move in chess) to 
challenge your adversary to the most difficult problem solved by your team. We 
also recommend that you organize a few simple training mathematical battles within 
your circle or school. 

We should mention here that the popularity of mathematicaJ battles in Lenin­
grad was sometimes so high that speciaJized schools even held championships (in 
the senior grades only). There were aJso "triple" mathematicaJ battles (with three 
teams participating) which are far more difficult to organize. 

As an illustration, we give here an example of a mathematicaJ battle. Below is 
the problem list and the record of a battle which was actually held in 1986 between 
two advanced Leningrad circles for sixth graders (ages 12-13) affiliated with the 
Leningrad PaJace of Pioneers and the Youth MathematicaJ School. 

1. A "crocodile" is a pawn which can move across an infinite sheet of graph paper 
in the following way: standing on any square it first moves to a neighboring square 
(horizontally or verticaJly) and then moves n boxes in the direction perpendicular 
to the direction of the first shift. For example, if n = 2, the "crocodile" is a chess 
knight. Find aJl n such that the "crocodile" can reach any box from any other. 

2. The numbers p and 2" + p2 are primes. Find p. 

3. Can the cube of a naturaJ number end with 1985 ones? 

4. Prove that one can aJways choose three diagonaJs from among the diagonaJs of 
a convex pentagon, which can form a triangle. 

5. The boxes of an n x (n + 1) table are filled with integers. Prove that one can 
cross out several columns (but not aJl of them!) so that after this operation all the 
sums of the numbers in each row will be even. 

6. How many ways are there to represent the number 15 as the sum of severaJ 
natural addends, if we distinguish representations which differ in the order of their 
addends? 
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7. Point A is called a "pseudocenter of symmetry" of set M (containing more than 
one point on the plane) if it is possible to remove a point from Min such a way that 
A will be the center of symmetry of the resulting set. How many pseudocenters of 
symmetry can a finite set have? 

8. Thirty numbers are placed around a circle so that each of them equals the 
difference of the two numbers following it in a clockwise direction. Given that the 
sum of these numbers is 1, find them. 

Captain's contest: is the number 227 prime? (won by LPP team) 

The Jury YMS LPP 

0 Ivanov ---6--> Dogolyatsky 12 
18 0 I ,_5_ in corr .challenge -6 

12 Demchenko <-8- Gurevich 0 
12 Vyskubov -4->I Pchelintsev 0 
12 Ivanov <-2- Roginskaya 0 
12 Viro -3--> I Dogolyatsky 0 
12 Novik <-1- Gurevich 0 

18 -6 in corr .challenge l-7--> 0 

Remark 1. The symbol -6--> denotes the challenge for Problem 6. An arrow 
ending with a vertical line (like -3--> I) denotes a rejection of the challenge. 

Remark 2. The record shows that the YMS team committed a serious tactical 
error. What was this? 

§3. Mathematical fight 

Unlike the mathematical battle, this is an individual event. Therefore, we rec­
ommend its use in a circle which is rather homogeneous in mathematical strength. 

Some problems are submitted for solution: each of them is supplied with its 
"price" in winning points. As soon as somebody wants to give a solution, he or she 
steps forward to the blackboard and explains it. If the solution is correct, then the 
storyteller collects the price. Otherwise, the price of the problem must be slightly 
increased-the amount of this increase is determined by the teacher-and the same 
amount is subtracted from the storyteller's balance. 

This contest is risky since it can actually last forever if some of the problems 
are too difficult. The teacher must take measures against this. 

This contest teaches the students the art of self-control: they must double-check 
their solutions. If they do not they can finish the fight with a negative number of 
points. 

We conclude this section with an example of a real mathematical fight: 

9. An "emperor" in checkers is a piece that can move backwards and forwards 
any number of squares along a diagonal, capturing a piece by passing over it (but 
it cannot pass over two or more pieces in diagonally adjacent squares). What is 
the largest number of checker "emperors" that can be placed on a checkers board 
with dimensions 8 x 8 so that each of them can be directly taken by some other 
"emperor"? (5 points) 
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10. Perpendiculars are draw;, from the midpoints of the sides of acute triangle 
ABC to its sides. Prove that the area of the resulting hexagon is half the area of 
the triangle. (6 points) 

11. Find 2 three-digit numbers x and y such that the sum of all the other three-digit 
numbers equals 600x. ( 6 points) 

12. A right-angle tool can be used to draw a line through two given points, and 
erect a perpendicular to a given line at a given point. Use this tool to drop a 
perpendicular from a given point to a given line. (10 points) 

13. There are 10 girls and 10 boys in a dancing class. It is known that for any 
1 ~ k ~ n and for any group of k boys the number of girls who are friends with at 
least one boy from this group is not less than k. Prove that it is possible to split 
the class into 10 pairs for a dance so that every pair consists of a boy and a girl 
who are friends. (20 points) 

Record list: 
(9): 5-Peterson 
(10): 6 --> 7-Thompson 
(11): 6--> 9-Johnson 
(12): 10 --> 15 --> 18-Smithson 
(13): 20--> 27-Peterson 

Results: 
Peterson ( +24) 
Thompson (+7) 
Johnson ( +9) 
Smithson (+12) 
Knickerbocker (-5) 

Exercise. In the list above the numbers in parentheses give the order of the 
problems. The numbers that follow record how each price changed in the course of 
the contest. Then the name of the solver is given. Try to reconstruct the fight. 

Remark. The problems from the problems list can be submitted for solution one 
at a time or all at once. 

§4. Mathematical marathon 

This is an oral olympiad (which can also be held in written form). To organize 
it the teacher might want to recruit some assistants, and to create a rather long 
list of sufficiently simple problems. Before we describe the details we should say 
a few words about the system of oral olympiads, which is extremely popular in 
St. Petersburg but is not well-known beyond the former iron curtain. 

All solutions must be submitted orally to one of the jurors, but they do not have 
to be written in advance. The result of the presentation is recorded ( + for an ade­
quate solution and - for none). Each contestant is allowed three attempts on every 
problem. Therefore, the record list can contain such grades as "two minuses" ( =) 
or "plus with two minuses" (;!;). The latter is usually considered equivalent to+. 

An oral olympiad is usually split into two stages: a "preliminary" and a "final" 
stage (this is how it is done, for example, at the All-City St. Petersburg olympiad, 
which is oral). At the first stage all contestants are given 4 preliminary problems to 
solve, and only those who have correctly solved three of them (or sometimes two) 
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are transferred to another auditorium where they get the complete list of 6 or 7 
problems (they are already familiar with the first four of them). 

The mathematical marathon is the ultimate version of this elimination system. 
The teacher must have a list of 10-20 problems carefully prepared in advance. The 
first 5-10 of them must be very simple and quite standard. The level of difficulty 
should increase slowly with the number of the problems in the list. 

At the beginning of the marathon all the students receive problems 1 and 2 
from the list. After that they start solving and explaining their solutions to the 
teacher or assistants. If a problem is solved correctly, then the juror puts a plus 
sign in the record, and the contestant gets the next problem from the list. For 
instance, if Mary had problems 3 and 7, then after solving either of them she will 
get problem 8. 

Thus, at any moment of the olympiad all participants have exactly two unsolved 
problems on their hands. 

Experience has shown that during the marathon students manage to solve more 
problems than they otherwise would in the same time period, probably because their 
concentration is much higher. Experience also shows that students find marathons 
more interesting and attractive than other, more well-known olympiads. 

For teachers. Using problems from this book, one can create several very 
simple marathons and some difficult ones. We recommend that you take several of 
the simplest exercises from the chapters you are interested in and mix them up in 
an arbitrary order to make up the first half of a marathon. The second part can be 
made up similarly but using slightly more difficult problems. The level of difficulty 
must gradually increase as the students move through the list. 

Warning. The most dangerous mistake one can make in preparing a marathon is 
to underestimate the complexity of the first problems on the list. If one of the first 
5-6 problems is not solved by most of the students, then the marathon will be a 
failure. 

§5. Mathematical hockey 

This interesting mathematical competition is intended for students of ages 10 
through 12 or older. The game is played by two teams, each consisting of 5 players: 
one "goalkeeper" , two "defensive players" , and two "forwards". 

The teacher must have a rather long list of extremely simple problems, prefer­
ably of a numerical nature, so that each of them could be solved in five minutes. 

At the beginning of the game the puck (imaginary, of course; though you can 
draw a hockey field with zones and puck on a blackboard) is at the center of the 
field. The puck is thrown in-this means that all the field players of both teams 
are given the first problem from the list. If team A finds the solution sooner the 
puck moves to the wne. of defeated team B., where the forwards of team A will play 
against the defensive players of team B. Their struggle is over the next problem 
from the list. Depending on the outcome of this combat, the puck moves again 
either back to the center of the field or to the goal zone of team B. In the latter 
case, the goalkeeper of team B plays alone against the forwards of team A during 
the next struggle, as they try to solve the next problem from the list. If the forwards 
win they score a point, and the. next problem will be ''thrown in" at the center of 
the field. 
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You can think of the field as consisting of the five zones shown in Figure 126. 
At each moment of the game the puck is in one of these zones. Depending on the 
outcome of each struggle, the puck moves to the adjacent zone, either to the left or 
to the right. 

FIGURE 126 

Hints. 1. To make this game more dynamic, remove the central part of the field. 
In this case the initial throwing-in can be done by tossing a coin. 

2. If there are too many students in your circle, then you can make three or 
more teams. They can play a round-robin or elimination tournament. All the teams 
not playing in the current game act as spectators. 

3. You should choose up sides quite carefully. Try to reach an approximate 
equality in the average strength of the teams (this goes for any other mathematical 
team contest as well). 

§6. Mathematical auction 

This contest is very close to gambling, though of course it is not. Our experience 
shows that students participate in such competitions with great enthusiasm. What 
is also important is that a mathematical auction can be held as an individual contest 
as well as in team format. 

The rules are as follows. The teacher gives the students one problem of a special 
type (we will call it a "research problem"), a complete solution to which may be 
unknown even to the teacher (though this is not recommended). More specifically, 
a research problem must allow intermediate answers which make possible a gradual 
approach to the final result. To make the competition more interesting there must 
be at least 5 or 6 of these problems. 

14. What is the maximum number of chess bishops which can be placed on an 
8 x 8 chessboard (other versions: chess knights, rooks; 10 x 10 board, et cetera) so 
that no two of them attack each other? 

15. What is the maximum number of figures shown in Figure 127 which can be 
placed without overlapping inside a 10 x 10 table? 

FIGURE 127 
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16. Find"" many solutions ""possible to the following alphanumeric puzzle: BACK 
+BOA= SCAM. 

17. Using the digits 1, 9, 8, and 4 in the given order, and four arithmetic operations, 
write "" many consecutive natural numbers "" possible starting with 1. Example: 
5 = (1+9)/(8/4). 

18. Write the number 1991 using only 4's. Try to use "" few digits "" possible. 
You may use "" many arithmetic operations "" necessary. 

19. Draw 7 lines on the plane (other versions: 8, 9, or 10 lines) in such a way that 
among the parts they dissect the plane into, the number of triangles is a maximum. 

20. Arrange the maximum possible number of "maharajM" on a 10 x 10 board 
so that each of the squares of the board is under attack by at leMt one of them 
(a maharaja is a "superchess" piece which can move like a queen and also like a 
knight). 

Important remark. The exact statements of the problems above can be altered 
to get other problems, simply by changing particular numbers, figures, and so on. 

After a problem is submitted to the students, they are given a certain amount 
of time to solve it (the event is best managed if more than one problem is submitted 
at the same time). Then each team is allotted an equal number of units of fictional 
"currency", such as dinars. For instance, their initial capital may be 1000 dinars. 

Finally, the auction itself begins. Each problem is put up for bid by an auction­
eer (usually the teacher). The auctioneer announces the beginning of the auction 
and the value of the first problem. 

Suppose Problem 17 (above) is put up for auction, and is valued at 180 dinars. 
Then the team which solves this problem will get 180 dinars for the solution. But, 
"" we will see, the cash flow may not be straightforward. 

Example. Team A pays 132 dinars for the right to give their results to the problem. They 

demonstrate how to write all natural numbers l through 62 in the required way. However, dur­

ing this demonstration it is discovered that their representation of the number 51 is incorrect. 
Therefore, they get credit only for expressing the numbers 1 through 50. 

Then the problem is again put up for auction, but this time the team who buys 
it is permitted to give only stronger results than those of the previous team. 
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Example (cont.). Suppose team B now pays 25 dinars for the right to improve on team A's 

results. They demonstrate how to express in the required way the numbers 51 through 68 (of 

course, they need not repeat the representations of the numbers 1 through 50). 

The problem is put up for auction again and again, until no team wants to buy 
the problem anymore. When this happens, the team with the best result collects 
the value of the problem. In cases when the winner can give a complete solution 
(that is, by showing that their result cannot be improved), they are eligible for 
special prize money (say, another 50 dinars). 

Example (cont.). For example, team C pays 6 dinars for the right to give a better solution 
than team B. But their representation of the number 69 turns out to be wrong. Their 6 dinars 
are simply wasted, and the auction trade of Problem 17 is terminated. 

Results of part of the auction: 
Team A lost 132 dinars. 
Team B gained 155 dinars (180 - 25 = 155). 

Team C lost 6 dinars. 

Now the next problem is put up for auction, and so on. 
Here are five more research problems that can be used at auctions. 

21. Make the minimum possible number of marks on a wooden plank so that every 
integer number of inches from 1 through 15 (other versions: from 1 through 20, 30, 
et cetera) can be measured using this plank; that is, this length can be represented 
as the distance between some pair of the marks. 

22. What is the minimum possible number of straight cuts necessary to split a 
5 x 5 x 5 cube into 125 unit cubes, if the pieces can be rearranged arbitrarily 
between cuts? 

23. There are 10 bricks, each 10 inches long. It is permitted to arrange them in a 
stable stack, and the bricks are not required to lie exactly over each other. What is 
the maximum possible horizontal distance between the right edges of the top and 
the bottom bricks in the stack? 

24. Dissect a square into the smallest possible number of acute triangles. 

25. Find as many solutions of the equation x 2 + y 2 = z2 in natural numbers no 
greater than 50 as possible (other versions: greater than 40 or 100). 





APPENDIX B 

Answers, Hints, Solutions 

O. CHAPTER ZERO 

1. Thinking backwards, we can see that if the glass is full after 60 seconds, it must 
have been half full one second before. Answer: after 59 seconds. 
2. Again, we can think of this backwards. One of the tourists, say Alex, can pay 
15 chips for all three of them. Then each of the others owes Alex 5 chips. They 
can easily pay, for example, by giving Alex a 20-chip coin and receiving a 15-chip 
coin in return. 

3. The key insight here is that the parity of the number of the last page torn out 
is opposite that of the first page. This is not ha.rd to see if we watch what happens 
if Jack tears out 1 page, then 2 pages, then another small number of pages. Of the 
three-digit numbers with digits 1, 3, and 8, only 318 is greater than 183 and has 
parity opposite that of 318. Now, 318 - 183 + 1 = 136, which is the answer. 
4. The problem allows us only to divide a given set of nails into two parts with equal 
weights. So, for example, we can get piles of 12, 6, and 3 pounds by continually 
halving the original pile. Then three 3-pound piles will give 9 pounds of nails. 
5. Most people would reason that the caterpillar's net achievement each day and 
night is 1 inch, so it will take him 75 days. However, on the 70th day the caterpillar 
will have climbed 70 inches, and the next day's effort will supply him with the 
"missing" 5 inches. Answer: the caterpillar will be on the top of the pole at the 
end of the 71st day (before the 71st night begins). 
6. The 1st, 8th, 15th, 22nd, and 29th days of any month a.re the same day of the 
week. Since January has 31 days, if the month starts on a given day, there will be 
five of those days, and also five of the next two days of the week. Hence January 
could not have started on Saturday, Sunday, or Monday (otherwise there would 
be five Mondays), and not on a Wednesday, Thursday, or Friday (otherwise there 
would be five Fridays). Hence January 1 was a Tuesday, and it is not difficult to 
see that J anua.ry 20th was a Sunday. 
7. Without loss of generality we can assume that the given diagonal goes from the 
upper left corner to the lower right. Then, we will color all the boxes crossed by 
the diagonal black. In every row of the table, let us mark the black box which is 
the nearest to the left (vertical) side of the table with the letter R. Similarly, in 
each column, we will mark the box which is the nearest to the upper (horizontal) 
side of the table with the letter C. We can prove that each of the black boxes is 
marked at least once, and that only the box in the upper left corner is marked 
more than once. Therefore, the number of black boxes is the sum of the number of 
boxes marked R and the number of boxes marked C minus 1. That is, the answer 
is 199 + 991 - 1 = 1189. 

211 
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Now we try to prove our previous claims. First, why was each of the squares 
colored at least once? If one of the squares-say, A-is not marked with any letter, 
then its left and upper neighbors must also be black; that is, they intersect with the 
diagonal, which is impossible. Second, if a black square is marked with both letters 
R and C, then there are no black squares in the same row to the left of it and no 
black squares in the same column up from it. This means that the diagonal passes 
through the upper left corner of this square, which is also impossible, though the 
reason is more complicated (it is because 199 and 991 are relatively prime, but we 
do not think it is appropriate to go into such technicalities in discussing problems 
from this chapter). 

8. We would like as many 5's on the left as possible. We can accomplish this 
by crossing out the initial sequence 1234, leaving a 5, then crossing out another 
sequence of 1234. Clearly, had we left any digit other than 5 on the left our number 
would have been smaller. However, we cannot gain another 5, since we can only 
cross out two more digits. So we cross out the next two small digits: 1 and 2. It is 
not hard to see that the result, 553451234512345 is the largest possible. 

9. We need to have as much time as possible between the uttering of this sentence 
and Peter's next birthday. We can manage this if he made his statement on January 
1, and he was born on December 31. He will turn 13 at the end of the next calendar 
year. 

10. No, he is not. Indeed, the fact that event A (rain) always causes B (cat's sneeze) 
does not mean that B causes event A. This is one example of a very common sort 
of logical error, the confusion of a statement with its converse. 

11. There are 12 circles: five of them are on one side of the sheet, and the other 
seven are on the other side. This is the only possible explanation of what happened 
in the class. 

12. Yes, it is possible, if the professor is a woman. 

13. The third turtle lied. 

14. He reasoned as follows: "If my face is clean, then one of my colleagues, seeing 
that the third one is laughing at something, would realize that his face is also black 
with soot. Since he is still laughing, my face must be black as well." 

15. Certainly, the percentage of milk in the tea is the same as the percentage of 
tea in the milk, since the total amount of milk (or of tea) in both glasses does not 
change. 

16. See Figure 128. This answer is unique up to rotations and reflections. 

4 3 8 

9 5 1 

2 7 6 

FIGURE 128 
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1 7. There are 95343 "loves" in· "there" . 

18. There is only one answer: 51286+1582 = 52868. Hints: L+L < 10; S+S ::": 10; 
otherwise, the hundreds and the units digits in the number BASES could not be 
equal (B of E!). 

19. The dollar bills can be distributed as follows: 1 + 2 + 4 + 8 + 16 + 32 + 64. 

20. See Figure 129. 

FIGURE 129 

21. See Figure 130. 

FIGURE 130 

22. See Figure 131. 

FIGURE 131 
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23. Take three pencils and arrange them as shown in Figure 132. Another three 
pencils are to be arranged similarly but "spun" in the opposite direction and put 
on the top of the first three. 

FIGURE 132 

24. See Figure 133. 

FIGURE 133 

25. Remove the four coins shown in Figure 134. 

FIGURE 134 

1. PARITY 

2. A knight always moves from a square of one color to a square of the opposite 
color. Thus the colors of the squares occupied by the knight alternate between 
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white and black. To get back to a square of the same color as he started on (in 
particular, the same square), he must make evenly many moves. 
4. Answer: No, it cannot. Suppose we did have such a line. If we trace the path, 
each time we intersect the given line we pass from the half-plane on one side of 
the line to the half-plane on the other side (any line divides a plane into two half­
planes). Since the path is closed, we begin and end on the same side of the line. 
The sides of the line alternate, so the polygon would have evenly many vertices. 

5. Answer: No, he cannot. Let us call a position of the three pucks "correct" if, in 
tracing triangle ABC from A to B to C (and back to A), we travel clockwise. Let 
us call a position "incorrect" in the opposite case. It is not hard to see that after 
each move, the "correctness" of the pucks' positions changes. Hence the original 
position cannot be recovered. 
6. Answer: five. If any of Katya's friends are standing next to children of their 
own sex, then it is clear that all the children are of the same sex. This means that 
the boys and girls must alternate, so that there are as many girls as boys. 
8. Answer: No. There are 25 squares on the board. Since each domino covers two 
squares, the dominoes can only cover an even number of squares. 
9. If the axis of symmetry did not pass through a vertex, then the 101 vertices could 
be partitioned into pairs of symmetric vertices. This is impossible, since 101 is odd. 
However, a regular decagon is an example of a 10-gon with an axis of symmetry 
which does not pass through any of its vertices. 
10. Within the chain of dominoes, each number of spots occurs in a pair (placed 
end-to-end). Since there are eight 5's in the set of dominoes, the last square must 
also have five spots on it. 
11. Answer: No. We prove this by contradiction. If there were such a chain, then 
one of the numbers 1, 2, 3 does not occur at the ends of the chain. Suppose the 
number 3 does not occur. Now inside the chain the 3's occur in pairs, so 3 occurs 
an even number of times. However, with the "zeros" discarded, there will be seven 
3's in the set altogether. This is a contradiction. 
12. The answer is no. Suppose we could partition a convex 13-gon into parallel­
ograms. Let us choose one side of the 13-gon, and consider the parallelogram it 
belongs to (it is clear that there are not two such parallelograms). The opposite 
side of this parallelogram is also a side of a second parallelogram. This second par­
allelogram has another side parallel to the first, and we can continue this "chain" of 
parallelograms until we arrive at a side of the 13-gon. This side is therefore parallel 
to the side with which we started, and since a convex polygon cannot have three 
mutually parallel sides it is parallel to no other side of the convex 13-gon. 

This argument shows that if we could partition the 13-gon into parallelograms, 
we would be able to find pairs of parallel sides. Since 13 is an odd number, this is 
impossible. 
14. Suppose that no checker is placed in the center square. We counect all the pairs 
of checkers which are located symmetrically with respect to one of the diagonals 
with a thread. We then divide all the checkers into "necklaces": groups connected 
by threads. Then in each "necklace" there will be either two or four checkers. This 
means that the total number of checkers will be even, which is a contradiction. 
15. It is not hard to see that there must be fifteen 1 's in the table, for example, 
by noticing that there is one 1 in each column. Problem 13, applied to the boxes 
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with 1 's in them, shows that there must be at least one 1 along the main diagonal. 
Reasoning anaiogously, the main diagonal must contain a 2, a 3, and so on. An 
example of such a table is shown below. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 
3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 
4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 
5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 
6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 
7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 
8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 
9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 
10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 
11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 
12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 
13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 
14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 7. Answer: No. The sum of the pair of numbers on each page is odd, and the 
sum of 25 odd numbers will also be odd. The number 1990 is even. 

18. Clearly, each integer is either +1 or -1, and there are an even number of +l's 
(since their product is positive). If their sum were zero, there would have to be 11 
numbers +1, which is a contradiction. 

19. Answer: No. Among the given numbers, only one (2) is even, and the rest are 
odd. Therefore, the sum of the numbers in the row containing the 2 is odd, while 
the sum of any other row is even. 

20. Answer: No. The sum of the numbers from 1 through 10 is 55, and changing 
the sign of any one of them changes this sum by an even number. The sum must 
thus remain odd. 

21. The proof is the same as in Problem 20, since the sum 1 + 2 + 3 + ... + 1985 
is odd. 

22. Answer: No. It is not hard to see that the given operation does not change the 
parity of the sum of the numbers on the blackboard. Since this parity is initiaily 
odd, the sum can never be 0. 

23. Answer: No. Each domino covers one black square and one white square, but 
if we leave out squares al and h8, there will be two more white squares than black 
squares remaining. 

24. Suppose there were a 17-digit integer whose "reversed sum" contained no even 
digit. For convenience, we number the columns of digits from right to left, and 
consider the usual addition algorithm. The ninth digit of our number will be added 
to itself. This would produce an even digit in the answer, unless there is a "carry" 
from the 8th column. But if there is such a carry, then there must be one also from 
the 10th column to the 11th (the 10th column is identical to the 8th except for 
the order of the digits). Hence the 7th column has digits of the same parity, and 
requires a carry from the sixth column. 
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Proceeding similarly, we find that there must be a carry into each odd num­
bered column. But there cannot be a carry into the first column, so we have a 
contradiction. 

25. Answer: No. Since a given soldier shares each tour of duty with two others, 
if he shared duty with every other soldier exactly once, the 99 remaining soldiers 
could be partitioned into pairs with whom he shared his tours of duty. This is a 
contradiction, since 99 is an odd number. 

26. For any point X lying outside segment AB, the difference AX -BX= ±AB. 
If we assume that the sum of the distances from A and from B are equal, then the 
expression ±AB± AB± ... ± AB, in which there are 45 addends, is zero. This is 
impossible. 

27. We can analyze this situation by working backwards. If there are nine l's in 
the circle, then there must have been either nine l's or nine O's before the operation 
was applied. Since there are not nine l's to begin with, nine l's cannot arise in this 
way. If there were nine O's, then the desired situation was achieved in the previous 
step. But could this have happened? If there are nine O's, then in the step before 
this, the O's and l's would have alternated. This is impossible, since there are oddly 
many numbers altogether. 

28. Let us number the students, starting with any one of them. We use an indirect 
method of proof, supposing no student has two neighbors who are boys. Suppose 
there is a boy in the kth position. Then there is a girl either in position k - 1 or 
position k + 1. If position k + 1 is a girl, then k + 2 cannot be a boy (or else that 
girl would have two boys for neighbors). If position k + 1 is a boy, then a girl must 
sit in position k+2 (or else that boy would have two boys for neighbors). A similar 
argument shows that a girl must be seated in position k - 2 as well. 

Continuing the analogous reasoning and taking the numbers "modulo 50", we 
can show that if_ there is a girl in the kth position, then there are boys in both the 
(k - 2)nd and (k + 2)nd positions. If we now look only at those 25 students sitting 
in even places, we find that among them the boys and the girls alternate around 
the table. But 25 is an odd number, so this is impossible. 

Students should be encouraged to complete the analogous reasoning in this 
problem, rather than simply relying on the symmetry of the situation with respect 
to boys and girls. 

29. Suppose the snail has returned "home" after tracing over N vertical segments. 
Then it is not hard to see that the snail has also traced over N horizontal segments. 
Altogether, it has traced 2N segments, and spent 30N = (2N) 15 minutes. Since 
the snail has returned home, N is even (the number of upward segments traced, 
for example, must equal the number of downward segments, and their sum is N). 
Hence 2N is a multiple of 4, and (2N)(l5 minutes) is a whole number of hours. 

30. Answer: No. Let us name the grasshoppers A, B, and C. We call the positions 
ABC, BCA, and CAB (left to right) correct, and the positions ACB, BAC, and 
CBA incorrect. It is easy to see that after each leap, the type of position changes 
from correct to incorrect or back. 

31. Peter must lay the chosen coin aside, divide the remaining coins into two piles 
of 50 coins each, and weigh these piles against each other. We will show that if the 
chosen coin is genuine, the difference between the weights must be even, and if the 
coin is counterfeit, the difference must be odd. 
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First suppose the chosen coin is genuine. If we knew the total weight of the 
remaining genuine coins, we would calculate the total weight of the counterfeit 
coins by adding fifty numbers, each equal to ±1. This means that if we put the 
50 remaining genuine coins in one pan of the balance, and the 50 counterfeit coins 
in the other, the difference in weights would be even. It is not difficult to see that 
if we exchange a coin from one side of the balance for a coin from the other, the 
difference will change by ±2. We can keep exchanging coins between the pans. At 
each exchange, if the coins are identical, the difference does not change. If one 
is genuine, the difference changes by ±2. If one is too heavy and the other too 
light, the difference changes by ±4. In any case, the operation of exchanging coins 
preserves the parity of this difference. We can achieve any arrangement of the coins 
on the balance by performing exchanges on the original arrangements. Since the 
difference was originally zero, the parity of any difference must be even. 

Similarly, we can show that if the coin is counterfeit, then the difference is odd. 
For if we put all the counterfeit coins on one side of the balance {and one genuine 
one as well), the difference would show an odd number {the sum of 49 differences 
of +1 or -1). Again, the parity of this difference does not change when two coins 
are exchanged. Hence a counterfeit coin will yield an odd difference. 

32. Answer: No. Suppose the numbers were arranged as required. Then number 
the places in which they stand from 1 through 9 (say, from left to right). If the 
number 1 is in place N, then it is not hard to see that the place number for 2 differs 
from N by an even number, and so is of the same parity. The same is true of 2 and 
3, of 3 and 4, and so on. This means that the places in which the numbers stand 
all have the same parity. Since there are nine numbers, and at most 5 places of the 
same parity {if that parity is odd), this is a contradiction. 

2. COMBINATORICS-1 

28. Since each of the five envelopes can be independently supplied with any of the 
four stamps, we must multiply the numbers of choices: 5 · 4 = 20. 

29. There are two different vowels and three different consonants which can be 
chosen independently. Thus, the answer is 2 · 3 = 6. 

30. Since no choice will restrict any other, we multiply the numbers of choices. 
Answer: 7 · 5 · 2 = 70. 

31. Since any two stamps can be exchanged, there are 20 · 20 ways to exchange 
stamps, and similarly, there are 10 · 10 ways to exchange postcards. Therefore, the 
answer is 20 · 20 + 10 · 10 = 500. 

32. There are two cases: a number can have all its digits odd or it can have all 
its digits even. The first case gives us 56 numbers, since each of the six digits 
can be chosen from the set {1, 3, 5, 7, 9} independently. The second case, however, 
is slightly different since the first digit cannot be zero, which gives us only 4 · 55 

numbers. Thus, the answer is 56 + 4 · 55 = 28125. 

33. Each of the letters can be given out in three different and independent ways. 
Therefore, to obtain the answer we must multiply six 3's, and the answer is 36 = 729. 

34. We must have one card of each suit, and the spade can be chosen in 13 ways. 
The club cannot be of the same value as the spade, and therefore there are only 12 
ways to choose it. The number of choices for the diamond is 11, and for the heart 
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is 10. The order in which we have named the suits does not affect the analysis. 
Answer: 13 · 12 · 11 · 10. 

35. Consider five cases, depending on how many books the stack consists of. If 
there is only one book, then it can be chosen in 5 ways. A stack of two books can 
be chosen in 5 · 4 ways, since the number of ways to choose the second book in the 
stack is 4. Similarly, we can calculate the numbers of ways to arrange 3, 4, and 5 
books in the stack. The answer is 5+5·4+5 ·4 ·3+5 .4.3. 2+5·4·3·2·1 = 325. 

36. Exactly one of the rooks must be in each row. Whether some of the rooks 
attack each other depends only on the choice of the columns the rooks are in. Since 
the numbers of the columns belong to the set of natural numbers 1 through 8, and 
two rooks can attack each other if and only if they stand in the same column, we 
have the familiar problem about the number of ways to arrange eight objects in a 
row. The answer is 8! = 40320. 

37. This problem is quite similar to the previous one. We can think of the boys 
as rows, and the girls as columns. Each square then represents a boy-girl pair, and 
each arrangement of "non-attacking" rooks yields a pairing for the class. Answer: 
n!. 

38. See the solution to Problem 23. Here, the players are vertices of an n-gon, and 
the diagonals represent matches played. Answer: 18 · 17 /2 = 153. 

39. The answers are 
a) (28 · 56 + 20 · 54 + 12 · 52 + 4 · 50)/2 = 1736; 
b) (4. 61+8. 60 + 20. 59 + 16. 57 + 16. 55)/2 = 1848; 
c) (28 · 42 + 20 · 40 + 12 · 38 + 4 · 36)/2 = 1288. 

To demonstrate the method, we will prove part a). There are 28 squares on the 
border of the chessboard, and from one of these the first bishop attacks 8 squares 
(including the one it stands on). Therefore, there are 56 squares left for the second 
bishop. F\J.rther, there are 20 squares adjacent to the border squares. When posi­
tioned on these squares, the first bishop attacks 10 squares, so there are 54 squares 
on which to place the second bishop. Analogously, there are 12 squares from which 
the first bishop attacks 12 squares, and, finally, 4 central squares (standing on these, 
the first bishop attacks 14 squares). After adding up all the variants, we must di­
vide the sum by two, since we counted each arrangement exactly twice (we do not 
distinguish the bishops). 

40. This problem can be restated as the following question: how many ways are 
there to arrange two apples, three pears, and four oranges in a row? The solution 
is just the same as in Problems 17-21. Answer: 9!/2!3!4!. 

41. Distributing the students is equivalent to arranging them in a row, since after 
doing that the first student can be sent to live in a single room, the next two to the 
double, and the remaining four to the room for four students. However, each of the 
distributions can be obtained from several arrangements. Indeed, we can pP,rmute 
the students within the pair and within the quadruple (we can do this with the 
first student too, though nobody will notice our efforts). Since there are 2! and 4! 
possible permutations of the pair and the quadruple respectively, we must divide 
the number of these arrangements (which is equal to 7!) by the product of 2! and 
4!. Thus, the answer is 7!/1!2!4!. 

42. Using the same method as in the previous solution, we obtain the answer 
8!/2!2!2!. 
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43. The answer can be obtained as the sum of four numbers, eacll representing 
the number of words with five letters A and 0, 1, 2, and 3 letters B respectively: 
1+6!/5!1! + 7!/5!2! + 8!/5!3! = 84. 
44. Hint: calculate the number of ten-digit numbers which do not possess the 
property described. The answer is: 9 · 109 - 9 · 9!. 

45. Since the number of seven-digit numbers without 1 in their decimal represen­
tation equals 8 · 96 , and 8 · 96 < 9 · 106 - 8 · 96 , we conclude that there are more 
numbers with 1 in their decimal representation. 

46. The number of outcomes without occurrences of six is equal to 53 . Thus, the 
answer is 63 - 53 = 91. 

47. The first pair can be chosen in (',') ways, the second pair can be chosen in (~2) 
ways, et cetera. So we have the product (',') (1,,2) ... @. But here eacll splitting is 
counted 7! times since every set of 7 pairs can be obtained in 7! ways (depending on 
the numeration of the pairs in the set). Therefore, the answer is (1,4) (',') ... (~) /7! 
which equals 13 · 11 · 9 · 7 · 5 · 3 · 1. 
48. The first eight digits can be chosen arbitrarily. There are 9 · 107 ways to do 
this. Then the last digit can always be chosen in exactly 5 ways (if the sum of the 
previous eight digits is odd, then we must choose an odd digit, otherwise the last 
digit must be even). Hence the answer is 9 · 107 · 5 = 450000000. 

3. DIVISIBILITY AND REMAINDERS 

1. The answers are a) 4; b) 6; c) 9; d) (n + l)(m + 1). We prove the last result, 
since it is a generalization of the previous ones. Every divisor of pnqm equals p'cf 
for some 0 :5 i :5 n and 0 :5 j :5 m. Therefore, the choice of a divisor is equivalent 
to the choice of two integers satisfying the inequalities above. The first of them, i, 
can be chosen inn+ 1 ways, and the second, j, in m + 1 ways. Multiplying the 
number of choices, we get the answer. 

3. Part b) implies part a), so we discuss only the former. There must be a number 
divisible by 3 among the given five numbers. Analogously, there is a number divisi­
ble by 5, and at least two even numbers, one of which is a multiple of 4. Multiplying 
3, 5, 2, and 4 gives us 120, and we are done. 

4. The answers are a) p- l; b) p2 -p. Part a) is not difficult: all natural numbers 
less than p are relatively prime top. The second result follows from the observation 
that the only numbers which are not relatively prime to p are the multiples of p, 
and there are p of these less than or equal to p2. 
5. Since 990 = 2 · 32 · 5 · 11, n! must contain a factor of 11. Since 11 is prime, it 
must itself be contained in the product, so n = 11 is the smallest possible value. 

6. If a number has n terminal zeros, then it is divisible by 10n. So we are asking 
how many factors of 10 are contained in 100!. But since 10 = 5 · 2, we are asking 
how many factors of 5 and 2 there are. Since 2 is smaller than 5, for any factor of 
5 there will be enough factors of 2 to make a factor of 10. Thus we need to count 
only factors of 5. 

Since 100 = 20 · 5, there are 20 multiples of 5 in the product 1 · 2 · 3 · ... · 99 · 100. 
But there are more factors of 5, since the numbers 25, 50, 75, and 100 contain two 
factors of five, to make four "extras". There are therefore 24 factors of 5, so 24 
factors of 10, so 24 terminal zeros in the product 100!. 
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Query. How many terminal zeros are there in 1000! ? 

7. We find that 24! ends with four zeros and 25! ends in six. It is not difficult to 
see that as n increases, the number of terminal zeros in n! cannot decrease. Hence 
the answer to our question is no. 

8. Let us split all the divisors of n into pairs of the following type: (d, n/d). The 
only obstacle to this is that the members of some pair may coincide. However, this 
can happen if and only if n is a perfect square, which completes the proof. 

9. Tom must have erred: the right-hand number is a multiple of 11, but neither of 
the left-hand numbers are. Since 11 is prime, this is impossible. 

Note that the placement of this problem in a set of exercises on divisibility 
provides a hint to its solution. The problem is more difficult if taken out of this 
context. 

11. Observe that 65(a + b) = 65a + 65b = 65a + 56a = 12la. Since 65 and 121 
are relatively prime, it follows that a+ b is divisible by 121, which is a composite 
number, so a+ b is composite as well. 

12. Answers: a) x = 16, y = 15; b) x = 152, y = 151, or x = 52, y = 49. To prove 
part a), let us rewrite the equation as follows: (x - y)(x + y) = 31. Since 31 is a 
prime number, the smaller factor must be 1, and the greater must be 31. Thus, we 
have the simultaneous equations 

{
x-y = 1, 

x+y = 31, 
which gives us the answer shown above. 

13. We have x(x2 + x + 1) = 3. Hence either x = ±1 or x = ±3. After analyzing 
all cases we find that x = 1. 

14. Hint: check that both sides of the equality are divisible by the same powers of 
any prime number p. 

15. a) 0 (the remainders when 1989, 1990, 1991, and 19923 when divided by 7 are 
1, 2, 3, and 1 respectively); b) 1, since 9 gives remainder 1 when divided by 8. 

17. Hint: analyze the remainders when divided by 5. 

18. Hint: analyze the remainders when divided by 3. 

19. Hint: analyze the remainders when divided by 9. 

21. a) Let us prove that the given numbers are divisible by 3 and by 8. We have 
p2 -1 = (p- l)(p+ 1). If p > 3 is prime, then pis odd. Hence both p-1 and p+ 1 
are even, and one of them is a multiple of 4. It follows that p2 - 1 is divisible by 8. 
Also, since p - 1, p, p + 1 are three consecutive integers, one of them is divisible by 
3. It is not the prime p, so it must be either p - 1 or p + 1. Thus p2 - 1 is divisible 
by 3 and 8, and therefore by 24. 

b) We have p2 - q2 = (p- q)(p + q). Proceeding as before, we find that both 
factors are even. To show that one of them is a multiple of 4, we assume the 
opposite; that is, that these numbers give remainders 2 when divided by 4. Then 
their sum must be divisible by 4. On the other hand, their sum is 2p, which is not 
a multiple of 4, since p is odd. 

F\irthermore, the numbers p and q must have either equal or different remain­
ders modulo 3. In the former case, their difference is divisible by 3; in the latter 
case, their sum is. This proves that (p - q)(p + q) is divisible by 3 and by 8. 
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22. If neither x nor y is divisible by 3, then x2 and y2 have remainders 1 when 
divided by 3. Therefore, their sum has remainder 2, which is impossible for a perfect 
square. 

23. Hint: check that both a and b are divisible by 3 and by 7. 

24. Hint: check that numbers x3 and x have equal remainders when divided by 6. 

25. If d is odd, then one of the numbers p and q is even, which is impossible. If d 
is not divisible by 3, then one of the numbers p, q, and r is divisible by 3, which 
again gives us a contradiction. 

26. Hint: find all possible remainders given by perfect squares when divided by 8. 

27. Possible remainders of perfect squares when divided by 9 are: 0, 1, 4, and 7. 
Check that if the sum of some triple of them is divisible by 9, then some pair of 
them are equal. 

30. Using the method of Problem 28, we find that the answer is 7. 

31. The answer is 1. 

32. The answer is 6. 

34. The answer is 3. Hint: the units digit of 'l7' has a cycle of length 4. We must 
determine when in this cycle 77 occurs; that is, we need the remainder when 77 is 
divided by 4. 

35. Hint: One of these numbers is always divisible by 3. a) p = 3; b) p = 3. 

36. The answer is p = 3. The method of the previous solution works here as well. 

37. Hint: prove that p = 3 using the same trick as before. 

38. Hint: analyze the remainders when divided by 3. 

39, 40. Hint: check that the remainder of the square of an odd number when 
divided by 4 is always 1, and the remainder of the square of an even number is 
always O. The answer to both questions is no. 

41. The answer is p = 5. Analyze the remainders upon division by 5. 

42. The remainder of this number when divided by 9 is 7, and this cannot be true 
of a perfect cube. 

43. Hint: find all possible remainders of the number a3 + b3 + 4 when divided by 
9. 

44. Hint: find all possible remainders of the number 6n3 + 3 when divided by 7. 

45. If neither of the numbers x or y is divisible by 3, then z2 gives a remainder of 
2 when divided by 3, which is impossible. Now notice that the square of an odd 
number always has remainder 1 when divided by 8; the square of an even number 
not divisible by 4 always has remainder 4; and the square of a multiple of 4 always 
has remainder 0. Using this, we can show that either both numbers x and y are 
even, or one of them is divisible by 4. 

46. Hints: a) 4 + 7a = 4(a + 1) + 3a; b) a+ b = (2 +a) - (35 - b) + 33. 

4 7. The answer is O. First, calculate the last digit of 02 +12 + 22 + ... + 92 • Second, 
notice that this last digit is always the same for every set of ten consecutive natural 
numbers. 

48. Prove that any two numbers out of the given seven~ay, x and y-have the 
same remainder when divided by 5. To accomplish this, consider two 6-tuples, the 
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first containing all the numbers but x, the second containing all the numbers but 
y. 

49. Denoting the first one of these numbers by a, we get 

a+ (a+ 2) + (a+4) + ... + (a+2(n- l)) = na+2(l +2 +3+ ... + (n-1)) 

=na+n(n-l) =n(a+n-l). 

50. Note that this number increased by 1 is divisible by 2, 3, 4, 5, and 6. The 
answer therefore is one less than the LCM of these numbers, or 59. 

51. If n is composite and greater than 4, then (n - l)! is divisible by n. Indeed, 
n =kl where k and l are less than n. If k # l, then the product (n - l)! contains 
both these numbers as factors and our point is proved. If k = l, that is, n = k2 , 

where k > 2, then the product (n-1)! contains factors k and 2k, and we are done. 

55. Using Euclid's algorithm we get gcd(30n + 2, l2n + 1) = gcd(l2n + 1, 6n) = 
gcd(6n, 1) = 1. 

56-57. Use Euclid's algorithm. The answers are: 220 - 1 and 111 ... 11 (twenty 
l's) respectively. 

4. THE PIGEON HOLE PRJNCIPLE 

3. The pigeon holes are the remainders when divided by 11. The pigeons are the 
numbers. (See also the solution to Problem 21.) If two numbers have the same 
remainder when divided by 11, their difference must be divisible by 11. 

4. The pigeon holes here are the numbers of hairs on a person's head (from 1 to 
1,000,000). The pigeons are the citizens of Leningrad. 

6. Let us sort the football players by team as they come off their airplanes. There 
will be lOM + 1 players to sort. The General Pigeon Hole Principle assures us that 
there will be one team which has 11 players, and this team is complete. 

8. There are five possible numbers of acquaintances for any person: 0, 1, 2, 3, or 
4. So it would seem that each could have a different number of friends. However, 
if any person has four acquaintances, then no person may have zero acquaintances. 
Hence two people must have the same number of acquaintances. 

9. If there are k teams, then the number of games played by each team varies 
from 0 to k - 1. However, if any team has played k - 1 games, then it has played 
every other team, and no team has played 0 games. Hence we are fitting k teams 
into k - 1 pigeon holes, which are either the numbers from 0 through k - 2 or the 
numbers 1 through k - 1. 

lOa. The answer is 32. Indeed, suppose that 33 or more squares are colored green. 
Then, after we have divided the board into sixteen 2 x 2 squares, the Pigeon Hole 
Principle guarantees that at least one of these squares contains 3 or more small green 
squares. These 3 green squares form the "forbidden" tromino in some position, and 
we have a contradiction. On the other hand, we can color all the black fields (of the 
usual coloring) green, and this is an example of 32 green squares with the property 
needed. 

!Ob. The answer is 32 (again!). Indeed, if 31 or fewer squares are colored green, 
then one of those sixteen 2 x 2 squares contains 1 or 0 green squares. Then the 
other 3 or 4 squares are not colored green, and they form the tromino without green 
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squares in it. This contra.diction (and the same construction as above) completes 
the proof. 

11. At least 1 + 2 + 3 = 6 problems were solved by the students mentioned in 
the problem statement. Therefore, there are 29 problems left to be solved, and 7 
students to account for them. If each student ha.cl solved only 4 problems, then 
there would have been only 28 problems solved. Therefore, one student must have 
solved at least 5 problems. 

12. Answer: 12 kings. See the hint to Problem lOa. 

13. Divide the cobweb into 4 sectors as shown in Figure 135, each of which can 
hold no more than one spider. 

FIGURE 135 

14. Each of the smaller triangles can cover only one vertex of the larger triangle. 

18. Color all the dry land red, and color each point diametrically opposite dry land 
green. Then there must be a point which is both red and green. Start the tunnel 
at this point. Do you see why this is, in a way, a Pigeon Hole Principle? 

19. There are only 1987 possible remainders when a number is divided by 1987. If 
we examine, for example, the first 1988 powers of 2, we find that two of them must 
have the same remainder when divided by 1987. These two powers then differ by a 
multiple of 1987. 

20. When divided by 100, a perfect square can give only 51 remainders, since the 
numbers x2 and (100 - x)2 give the same remainder. Hence of 52 integers, the 
squares of two must have the same remainder when divided by 100. These two 
squares differ by a multiple of 100. 

22. If3m and 3n (where m > n) are two powers of 3 which give the same remainder 
when divided by 1000, then 3m - 3n = 3n(3m-n - 1) is divisible by 1000. Now the 
prime factors of 1000 are 2 and 5, and neither divides 3n. It follows that 1000 must 
divide 3m-n - 1, which means that 3m-n is a power of 3 ending in the digits 001. 

23. This sum can take on only seven values: the numbers from -3 through 3. 

24. Divide all the people into 50 pairs who are sitting diametrically opposite each 
other. Consider these pairs as the pigeon holes. Since there are more than 50 men, 
one pair must include more than one man. 
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25. If the conclusion is false, then it is clear that the boys will have gathered at 
least 0 + 1 + 2 + ... + 14 = 105 nuts, which is a contradiction. 

26. The product of the numbers in all the groups is 9!= 362880. If the product of 
each group were no greater than 71, the product of all the numbers could only be 
713 = 357911. It should be noted here that this method of proof is, in a way, more 
general than the simple Pigeon Hole Principle. 

27. One can move from any square to any other by passing through neighboring 
cells, and we can always choose a path such that the number of squares visited is 
less than 19. This means that if a is the smallest number on the board, all the 
numbers are included between a and a + 95. Therefore there can be no more than 
96 different numbers among the 100 on the board, and two must be equal. 

28. We choose any one person in the group. Let us call him Bob. We sort the 
others into two pigeon holes: those who know Bob and those who do not. There 
are at least three of the remaining five people in one of these categories. Suppose 
Bob has three acquaintances. If two of these know each other, then they, together 
with Bob, form the required triple. If none of them knows each other, then they 
themselves form the required triple. A similar argument holds if there are three 
people whom Bob does not know. 

29. Consider the parity (remainder upon division by 2) of the coordinates of the 
points. There are four possibilities: (odd, odd); (odd, even); (even, odd); (even, 
even). Since there are five points, we can choose two of them whose coordinates 
both match in parity. It is not hard to see that the midpoint of the line segment 
they determine has integer coordinates. 

30. There are two categories into which we can fit the three sizes: those sizes for 
which there are more right boots than left boots, and those sizes for which there 
are more left boots than right boots (if there happens to be an equal number of 
right and left boots in one size, we put that size in the second category). It follows 
that two sizes lie in the same category. Let us say that sizes 41 and 42 have more 
right boots than left boots (an analogous argument will hold if two sizes have more 
left boots than right boots). 

Now there are 300 left boots in all, and at most 200 left boots in any one size. 
Therefore, the sum of the left boots in any two sizes is at least 100. We have shown 
that there are at least 100 left boots in sizes 41 and 42 (taken together), and that 
each of these sizes contains more right boots than left boots. Hence each left boot 
has a match, and there are at least 100 good pairs in the warehouse. 

31. There are 11 more consonants than vowels in the aiphabet. Therefore, if we 
add the differences between the number of consonants and the number of vowels in 
each of the six subsets, these differences must sum to 11. It follows that there must 
be at least one subset in which this difference is less than 2, and the letters of this 
subset must form a word. 

32. Consider the ten sums: x 1, x 1 + x2, x 1 + x 2 + X3, ... , x, + x2 + ... + X10-

Two of these must have the same remainder when divided by 10. The difference 
between these two sums gives a set whose sum is divisible by 10. 

33. We can divide the numbers from 1 through 20 into ten disjoint sets, such that 
if a pair of numbers is selected from the same set, one of the pair divides the other: 
{11}, {13}, {15}, {17}, {19}, {l, 2, 4, 8, 16}, {3, 6, 12}, {5, 10, 20}, {7, 14}, 
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{9, 18}. Then, of any eleven numbers not greater than 20, two of them must fit in 
one of these pigeon holes, and one of these two divides the other. 

34. We can number the study groups with the numbers 1 through 5. Then, instead 
of considering each student him or herself, we can consider the set of numbers 
belonging to the study groups he or she is part of. Each of these is a subset of 
the set {l, 2, 3, 4, 5}. We solve the problem by dividing the 32 subsets of this 
set into 10 collections such that if two subsets are chosen from the same collection, 
one of them contains the other (compare this with the solution to Problem 33). 
The following is such a collection. The subsets in each collection are written as 
numerals: 

[0, {l}, {l, 2}, {l, 2, 3}, {l, 2, 3, 4}, {l, 2, 3, 4, 5}], 
[ {2}, {2, 5}, {l, 2, 5}, {l, 2, 3, 5}]. 
[{3}, {l, 3}, {l, 3, 4}, {l, 3, 4, 5}]. 
[ { 4}, {l, 4}, {l, 2, 4}, {l, 2, 4, 5} J, 
[ {5}, {l, 5}, {l, 3, 5}], 
[ {2, 4}, {2, 4, 5}, {2, 3, 4, 5}], 
[{3, 4}, {3, 4, 5}]. 
[{3,5},{2,3,5}]. 
[{4,5},{1,4,5}], 
[{2, 3}, {2, 3, 4} J. 

5. GRAPHS-1 

3. Yes, such a path is possible. See, for example, Figure 136, in which a graph 
is drawn similar to the one in the solution of Problem 2. An example of a path 
satisfying the conditions of the problem can then be constructed easily. 

1 2 

3 4 5 6 
9 

7 8 9 10 

11 12 

FIGURE 136 

4. If the number AB is divisible by 3, then so is the number BA. This means that 
if a traveler can get from city A to city B directly, she can also get from city B 
directly to city A. This observation allows us to draw a graph of the connections, 
such as the one in Figure 137. Clearly, a traveler cannot get from any city to 
another. For example, she cannot get from city 1 to city 9. 

7. Draw a graph where the cities are vertices and the roads are edges. We can 
then count the edges of this graph using the method illustrated in Problem 5. The 
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6 5 

FIGURE 137 

problem states that the degree of each vertex is 4, so the total number of roads is 
equal to 100 · 4/2 = 200. 

9. Both situations (a) and (b) are impossible. In each case, we can think of a graph 
similar to that in Problem 5, and count the odd vertices. We find that the number 
of odd vertices is not even, so the graph cannot be drawn. 

10. Answer: No. We can imagine a graph in which the vertices represent vassals, 
and neighboring vassals are connected by edges. A count of the odd vertices shows 
that there are not evenly many of them, so the graph cannot be drawn. 

11. Answer: No. If the kingdom had k towns, then there would be 3k/2 roads. 
This number cannot equal 100 if k is an integer. 

12. Answer: Yes, it is true. Suppose it were not. Draw the graph in which the 
vertices represent islands and the edges represent the bridges connecting them. The 
problem says that each of the seven islands is represented by an odd vertex, so there 
would be oddly many odd vertices. Since this is impossible, the graph must show 
at least one edge leading to the shore. Figure 138 shows a graph representing a 
possible situation such as John described. 

FIGURE 138 



228 MATHEMATICAL CIRCLES (RUSSIAN EXPERIENCE) 

13. Imagine a huge graph in which each person who ever lived on earth is repre­
sented by a vertex, and each handshake is represented by an edge connecting the 
vertices corresponding to the two shakers. Then we are counting the odd vertices 
of this graph, and our theorem assures us that there must be evenly many of them. 

14. Answer: No. The difficulty in this problem is to decide how to draw the 
graph. Taking the line segments themselves as edges of a graph probably won't 
work (which may confuse some students at first). Instead, we can consider a graph 
where the actual line segments are represented by vertices (!), and two vertices are 
connected by an edge if and only if the corresponding line segments intersect. Then 
this graph has nine vertices of degree 3, which is impossible. 

16. We can generalize the solution to Problem 15. Suppose such a graph was not 
connected. Certainly it could not consist of fewer than two towns (with what could 
a single town fail to be connected?). Select two towns which, supposedly, cannot 
be connected by a path. Consider all the towns to which these two are connected. 
There are at least 2(n - 1)/2 = n - 1 of these. As before, these new towns must 
all be distinct: if two new towns were the same, the two selected towns would be 
connected by a path through it. Therefore, the graph would have n - 1 + 2 = n + 1 
towns, which is a contradiction. Hence the graph must be connected. 

Here again, it is clear that students should attempt to construct the graph in 
question. They will quickly find that it has "too many" edges not to be connected. 
This intuition can be the springboard for a formal discussion of the result. 

18. If road AB is closed, than it is enough to prove that we can still get from 
A to B. If this were not true, then in the connected component containing A, all 
the vertices other than A would be even. This situation of having exactly one odd 
vertex in a connected component contradicts our theorem about the odd vertices 
of a graph. 

20. Answer: No, such a stroll is not possible. We represent the islands and the 
shores by vertices of a graph, and bridges by edges. As Figure 139 shows, the graph 
has 4 odd vertices, which is too many. 

FIGURE 139 

21. Answers: (a) six bridges; (b) five bridges; (c) four. Students need simply count 
the number of bridges used to visit Thrice on each occasion. 

22. (a) The required cube is not possible. First note that the wire cannot double 
back on itself, since the total length of all the edges is 12 x 10 cm= 120 cm (using 
up the whole length of wire). Let us draw the graph of the cube's edges (Figure 
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140). If the wire frame could be formed, then we could follow the wire and traverse 
the graph without lifting the pencil from the paper. But this graph has eight odd 
vertices, which is too many to allow this. Therefore, the wire cannot be bent as 
required. 

FIGURE 140 

(b) Since the graph of the cube has 8 odd vertices, there must be at least four 
such pieces. 

6. THE TRIANGLE INEQUALITY 

1. Suppose AB 2:: BC. If A, B, and C form a triangle, then the triangle inequality 
assures us that AC+ BC > AB, which leads to the desired result. If AB ::; BC, 
then we can start with AB+ AC > BC (which the triangle inequality also assures 
us), to get the same result. 

Equality holds if and only if A, B, and Care collinear, and Bis not between 
A and C. 

2. The length of side BC must be less that AC + AB = 4.4. On the other hand, 
BC must be greater than IAB - BCI (see Problem 1), which is 3.2. The only 
integer within these bounds is 4. 

3. If the sides of the triangle are a, b, and c, then the triangle inequality tells us 
that b+c >a. Adding a to each side, we find that a+b+c > 2a, which is equivalent 
to the required result. 

4. Answer: 350 kilometers. 

6. We will show that OB+ OC +OD > OA. Adding the triangle inequalities 
AC+OC > OAand OB+OD > BD, we find AC+OB+OC+OD > OA+BD 
(see Figure 141). Since AC = BD, this gives the required result. Note that the 
same proof holds even if point 0 is outside the plane of square ABCD. 

7. Suppose the diagonals of the quadrilateral intersect at 0 (Figure 142). Then 
AB+BC >AC, BC+CD > BD, CD+AC >AC, and AD+AB > BD. Adding, 
we find that 2(AB+BC+CD+DA) > 2(AC+BD), which proves the first result. 
Also, OA+OB >AB, OB+OC> BC, OC+OD >CD, and OD+OA >AD. 
Adding, we find that 2(0A+OB+OC+OD) = 2(AC+BD) > AB+BC+CD+DA, 
which proves the second result. 
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0 

FIGURE 141 

FIGURE 142 

8. We have: AP+PB >AB; BQ+QC >BC; CR+RD >CD; DS+SE >DE; 
ET+TA >EA (see Figure 143). Adding these inequalities gives AP+PB+BQ+ 
QC+CR+RD+SE+ET+TA > AB+BC+CD+DE+EA. The right side 
of this inequality is the perimeter of the pentagon, while the left side is less than 
the sum of the diagonals (it will equal this sum if we add the perimeter of the inner 
rectangle PQRST). This proves the first result. 

B 

A 

D 

E 

FIGURE 143 

Tu get the second result, add the inequalities AC< AB+BC, BD < BC+CD, 
CE< CD+DE, DA< DE+EA, EB< EA+AB. 
9. If the internal points are X and Y, we extend the segment connecting them in 
both directions, until it intersects the sides of the triangle (see Figure 144). Then 
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EF < EA+AF, and EF < EB+BC+CF. Adding, we find that EF is less than 
half the perimeter of the triangle. Since XY < EF, XY is also less than half the 
perimeter. 

A 

E 

8-----~ c 
FIGURE 144 

11. The solution is the path ADEA as shown in Figure 145. Indeed, any other 
path will correspond to a path between points B and C (in that diagram) which is 
not a straight line. 

B 

FIGURE 145 

12. If we draw AD and AE (Figure 145), then BC = BD +DE+ EC = AD+ 
DE+ EA. Then DE is less than half of the perimeter of triangle ADE (Problem 
3), hence less than half of BC. 
14. We can unfold the cube to form a diagram such as in Figure 146. Then if 
the fly is at A, the shortest distance to the opposite vertex B is a straight line. 
Fblding the cube back up gives the answer. Students can make a paper model of 
this problem. Assigning a numerical value to an edge, they can be asked to find 
the length of the shortest path. 

15. We can "unroll" the surface of the glass to get a rectangle, then "unfold" the 
front and back of the rectangle to get Figure 147. The shortest path is again given 
by a straight line. 

16. Extend segment AO to intersect with side BC at point D. Then add the 
triangle inequalities AB+BD >AD and OD+DC > OC, and subtract OD from 
each side of the inequality. 
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A 

---
B 

FIGURE 146 

A [ .................................... ! c==J 
8~~Cs.J 

FIGURE 147 

18. The woodsman must walk to the vertex of the angle, then back home. If the 
given point is A, and the given obtuse angle is BOC (see Figure 148), we choose 
that one of the angles LAOC or LAO B which is acute (maybe they both are )--5ay, 
LAOC. Then we drop a perpendicular BD from point Bon line OC. By the result 
of Problem 13 we have AB+BC+CA > 2AD, and, obviously, we have AD> AO, 
which completes the proof. 

A 

c 

FIGURE 148 
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19. Construct parallelogram A.i3DC from triangle ABC (Figure 149). Then, from 
the triangle inequality, AB+ BD > AD = 2AM. Since BD = AC, this gives the 
first result. The second follows from writing the corresponding inequalities for each 
median and adding. 

)2i:.( 
A C 

FIGURE 149 

20. In finding the perimeter of the folded polygon, we lose the portion of the 
original perimeter represented by broken line AXY B (in the example of Figure 
150), but we add the length of segment AB. Since the sum of all but one side of a 
polygon is greater than the remaining side, the perimeter must have decreased. 

FIGURE 150 

21. Consider two of the sides which do not have a common endpoint-say sides 
AB and CD. Then, on the one hand, AC+ BC< AB+ CD (since AC and 
BD are diagonals). On the other hand, if AC and BD intersect at point 0, then 
OA +OB > AB and OC +OD > CD. Adding these inequalities we find that 
AB+ CD< AC+ BD, which is a contradiction. 

22. Suppose the medians intersect at point M. Then, adding the inequalities 
AM+ BM > AB, BM+ CM > BC, and CD+ AM < AC, and noticing that 
the lengths of AM, BM, and CM are each 2/3 of a median, we reach the required 
inequality. 

23. If the width of the river is h, and the towns are situated at points A and B, 
then the ends of the bridge must be placed at the points of intersection of lines 
A' B and AB' with the banks, where A' and B' are obtained from A and B by a 
translation of distance h towards the river (Figure 151). 

24. Consider the longest diagonal XY of the pentagon. One pair of vertices of 
the pentagon lies on the same side of this diagonal, so there exist two intersecting 
diagonals, each of which has X and Y as one endpoint respectively. It is not hard 
to see that these three diagonals will form a triangle. 
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A 

B 

FIGURE 151 

7. GAMES 

2. After each move, the number of piles increases by l. At first there are three piles, 
and at the end of the game there are 45. Therefore, 42 moves are made altogether. 
The last and winning move is always made by the second player. 

3. The parity of the result does not depend on the position of the pluses and 
minuses, but only on the number of odd integers in the original set of numbers. 
Since there are 10 odd integers to begin with, and 10 is an even number, the first 
player will win. 

4. After each move, the number of rows in which it is possible to place a rook 
decreases by 1, as does the number of columns. Therefore, there can only be 8 
moves al together, and the second player will make the last (winning) move. 

5. The parity of the number of l's on the blackboard remains unchanged after each 
move. Since there are evenly many l's to begin with, there cannot be a single 1 
left at the conclusion of the play (since 1 is an odd number!). The second player 
will therefore win. 

6. In playing the game, the greatest common divisor of the two initial numbers 
must eventually be written down (compare this game with Euclid's algorithm). 
Therefore, every multiple of the greatest common divisor, not greater than the 
original numbers, will also appear. In this case, the greatest common divisor of the 
original numbers is 1, so that every number from 1 to 36 must appear. Therefore 
there will be 34 turns, and the second player will win. 

7. This game is not entirely a joke, since the player who should win can in fact 
make a mistake and lose his or her advantage. This mistake consists in moving so 
that the remaining blank squares are all in one column or all in one row, allowing 
the opponent to win in the next move. The loser in this game, it turns out, is 
the player who makes j;,st this fateful move. Notice that after crossing out a row 
of an m x n board, we can consider the remaining squares to be an ( m - 1) x n 
board. Analogously, in crossing out a column of an m x n board, we form an 
m x (n-1) board. The unique situation in which each move is "fateful" is the case 
of a 2 x 2 board. Therefore, the player who leaves this position for his opponent will 
win. However, as we have seen, after each turn the sum of the rows and columns 
decreases by l. Therefore, the parity of this sum at the beginning of play will 
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determine the winner. In case (a) this is the first player, while in the remaining 
cases it is the second. Note that in case (b) the second player can follow a strategy 
of symmetry (see §2). 

11. Since a knight always moves from a black to a white square, or vice-versa, the 
second player can win, using either point or line symmetry. 

12. The first player will win, if he moves first to the center of the board, then 
adopts a symmetric strategy. 

13. The second player wins in both cases, using (a) line symmetry; (b) point 
symmetry. In the former case, the proof is quite simple: the second' player just 
maintains the symmetry by always moving to the square symmetric to the previous 
move of the first player with respect to the line between the fourth and the fifth 
rows of the board. Since two squares symmetric in this line always have different 
colors we cannot encounter the situation when the current move of the first player 
prohibits the symmetric move of the second player. 

The solution for the latter case is more tricky though the idea is similar: the 
second player uses symmetry with respect to the center of the board. The details 
are left to the reader. 

14. The second player wins, using a point symmetric strategy. 

15. The first player wins, if he removes the center checker first, then follows a point 
symmetric strategy. 

16. The first player wins, if he first makes the two piles equal, then adopts the 
second player's strategy from Problem 10. 

17. The first player wins. He must first draw a chord which separates the points 
into two groups of 9. He then replies symmetrically to each move of his opponent. 
Note that this strategy does not depend on how the points are arranged on the 
circle. 

18. The second player wins in both cases. No matter how the first player begins, 
the second player can reply so as to leave two identical rows of petals on the flower. 
He can then follow a symmetric strategy. 

19. In cases (a) and (b), the second player wins, following a strategy of point 
symmetry. 

In case ( c), the first player will win. In his first move, he skewers the row con­
sisting of the center cubes of the four 3 x 3 layers. After this, he plays symmetrically 
with respect to the center point of the figure. 

20. The loser is the player who breaks off a rectangle of width 1. The first player 
will win, by first breaking the chocolate bar into two 5 x 5 pieces. After that, he 
plays symmetrically. 

21. The first player will win, if he places his first x in the center square, then 
replies to each of the second player's moves with an x placed symmetrically with 
respect to the center square. 

23. The first player wins. We number the rows and columns of the chessboard in 
the usual order, so that the coordinates of square al are (1, 1), and those of square 
h8 are (8, 8). The winning positions are those in which the king occupies a square, 
both of whose coordinates are even. The first move is to square b2. 
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24. The first player wins. The winning positions are those in which both piles have 
oddly many pieces of candy. The first move is to eat the pile of 21 candies and 
divide the pile of 20 candies into any two piles of oddly many candies. 

25. The second player wins. The winning positions are those in which the number 
of unoccupied squares between the checkers is divisible by 3. 

26. The first player wins. The winning positions are those in which the box contains 
2n - 1 matches. The first move is to leave 255 matches in the box. 

27. The first player wins. The winning positions are those in which the largest pile 
of stones contains 2n - 1 stones. The first move consists in dividing the first two 
piles in any way at all, and dividing the third pile into two piles of 63 and 7 stones, 
respectively. 

28. In this game, the player who obtains a 1 will win. This is the first player, if he 
recognizes that writing an odd number is a winning position. 

29. In case (a) the second player wins, and in case (b) the first. The winning 
positions are those in which each pile contains oddly many matches. 

For Problems 32-38, we give answers provided by analysis from the endgame. 
The reader can supply details. 

32. The second player will win. Figure 152 shows the arrangement of pluses and 
minuses. 

- -+ + - - + + 
- -+ + - - + + 
- - - - - - - -- - - - - - - -- - + + - - + + - -+ + - - + + 
- - - - - - - -
+ - - - - - - -

FIGURE 152 

33. We can reformulate both cases (a) and (b) in terms of a chessboard. Game (a) 
turns out to be equivalent to the game of Problem 23. The arrangements of pluses 
and minuses in both cases are identical, and are shown in the figure to Problem 23 
(Figure 55). 

34. The first player wins. The arrangement of pluses and minuses, after a chess­
board reformulation, is given in Figure 153. 

35. This problem gives an example in which a geometric interpretation is not 
essential to an analysis of a game from the endgame. Here, it is convenient to mark 
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+ + + + + + + + + + + + 
- - + + 

+ 
+ + + + + + + + + + 
- - - - - - - ++ + 
- - - - - - - - + + 
+ + + + + + + + 

+ + - - + + 

- + - - + + 
+ + + - - + - - + + 

- - + - - + + + 
+ - - + + - - + 

FIGURE 153 
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each number with a plus or a minus. The plus signs belong to those numbers which 
are multiples of 10. Therefore, the second player will win. 

36. The winning positions are the numbers from 56 to 111, or from 4 to 6. Thus 
the first player wins, by moving to any of the numbers 4, 5, or 6. 

37. The winning positions are 500, 250, 125, 62, 31, 15, 7, and 3. The first player 
wins. 

38. The winning positions are the multiples of 3. The first player wins, for instance, 
by subtracting 1, 4, or 16 on the first move. 

9. INDUCTION 

8. The base can be either n = 1 or n = 2. To prove the inductive step let us take 
k+l points on a circle. The segments connecting all of these points but the (k+l)st 
divide the interior of the circle into k(k-l)(k-2)(k-3)/24+k(k- l)/2+ 1 parts 
by the inductive assumption. The segment connecting the (k + l)st point with the 
ith one (where i is a positive integer not greater thank) intersects (i - l)(k - i) 
other segments. Thus, adding this segment would increase the number of the parts 
by (i - l)(k - i) + 1. Adding all the segments connecting the (k + l)st point with 
the other k points would increase the number of parts by 

1 + (1. (k - 2) + 1) + ... + ((i - l)(k - i) + 1) + ... + ((k - 2). 1+1) + 1. 

This last expression can be rewritten as 

(k + 1)(1+2 + ... + k) - (12 + 22 + ... + k2) - k2 + k. 

Using the identities 

1 + 2 + ... + k = k(k: 1) 

(see the solution to Problem 6) and 

2 22 k2- k(k+l)(2k+l) 
1 + + ... + - 6 
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(see Problem 10), we obtain 

1 + (1. (k - 2) + 1) + ... + ((i - l)(k - i) + 1) + ... + ((k - 2). 1+1) + 1 

k(k + 1)2 k(k + 1)(2k + 1) k2 + k. 
=--2-- 6 

It remains to verify that 

(k(k - l)(k - 2)(k - 3) + k(k - 1) + 1) + (k(k + 1)2 - k(k + 1)(2k + 1) - k2 + k) 
24 2 2 6 

- (k + l)k(k - l)(k - 2) k(k + 1) 1 
- 24 +--2-+' 

which is just an algebraic calculation. 

9. The base is n = 1. Let us prove the inductive step. By the inductive assumption 
we have 

1+3 + ... + (2k -1) = k2. 
Thus, 

1+ 3+ ... + (2k -1) + (2(k + 1) - 1) = k2 +(2(k+1) -1) = (k + 1)2. 

10. The base is n = 1. Let us show the inductive step. By the assumption 

12 + 22 + ... + k2 = k(k + 1~(2k + 1). 

Thus, 

12 + 22 + ... + k2 + (k + 1)2 = k(k + 1)(2k + 1) + (k + 1)2 
6 

(k + l)(k + 2)(2(k + 1) + 1) 
6 

11. The base is n = 2 and is clear. By the assumption we have 

1. 2 + 2. 3 + ... + (k - 1). k = (k - l)k(k + l). 
3 

Thus, 

1·2+2·3+ .. . +(k-l)·k+k·(k+l) = (k - l)k(k + 1) +k·(k+l) = k(k + l)(k + 2). 
3 3 

12. The base is n = 2. By the assumption 

1 1 1 k-1 
1-2+2-3+ ... + (k-l)k = -k-. 

Thus, 

13. Use induction on n. The base is n = 1. Let us prove the inductive step. 

2 k :z;k+I -1 
l+x + ... +x =~· 
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Thus, 

1 + x• + ... + xk + xk+I = xk+I - 1 + xk+I xk+• - 1 
x-1 =-;=-I· 

14. We use induction on n. The base (n = 1) is quite clear. To prove the inductive 
step, we start as follows: 

1 1 1 k 
a(a+b) + (a+b)(a+2b) + ... + (a+(k-l)b)(a+kb) = a(a+kb)' 

Thus, 

1 1 1 1 
a(a+b) + (a+b)(a+2b) + ... + (a+(k-l)b)(a+kb) + (a+kb)(a+(k+l)b) 

k 1 k+ 1 
= a(a+kb) + (a+kb)(a+(k+l)b) = a(a+(k+l)b)' 

15. Let us use induction on n. The base is n = 0: 

m! (m+l)! 
Of O!(m+l)' 

For the inductive step we have (by assumption): 

Thus, 

m! (m+l)! (m+k)! (m+k+l)! 
Of+ --1!- + .. · + --k!- = k!(m + 1) · 

ml (m+ 1)! (m+k)! (m+k+ 1)! (m+k+ 1)! (m+k+ 1)! 
Of+ --1!- +···+--kl-+ (k + 1)! = k!(m + 1)! + (k + 1)! 

(m+k+l)! ( 1 1 ) (m+k+2)! 
= k! m+l + k+l = (k+l)!(m+l)' 

16. The base is n = 2. By the assumption 

Thus, 

17. The base is n = l: 13 + 23 + 33 = 36, and 36 is divisible by 9. 
Now the inductive step. By the inductive assumption k3 + (k + 1)3 + (k + 2)3 

is divisible by 9. Thus, 

(k + 1)3 + (k + 2)3 + (k + 3)3 = (k3 + (k + 1)3 + (k + 2)3) + (k + 3)3 - k3 

= (k3 + (k + 1)3 + (k + 2)3) + 9(k2 + 3k + 3) 

is also divisible by 9. 
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18. The base is n = 1: 34 + 8 - 9 = 80, and 80 is divisible by 16. 
Let us prove the inductive step. By the assumption 32k+2 + 8k - 9 is divisible 

by 16. We have 

(32k+4 + 8(k + 1) - 9) - (32k+2 + 8k - 9) = 32k+2. 8 + 8 = 8(32k+2 + 1). 

The number 32k+2 + 1 is even, so 8(32k+2 + 1) (and, hence, 32k+4 + B(k + 1) - 9) 
is divisible by 16. 

19. The base is n = 1: 41 + 15 - 1 = 18. 
Let us prove the inductive step. We know that 4k + 15k - 1 is divisible by 9. 

Thus, we have 

The number 4k has remainder 1 when divided by 3. So 4k + 5 is divisible by 3, and, 
thus, 3(4k + 5) is divisible by 9. 

20. The base is n = 1: 113 +123 = 23 · 133. 
Further, by the inductive assumption we know that 11k+2+122k+l is divisible 

by 133. Therefore, 

11 k+3 + 122k+3 = 11(11 k+2 + 122k+l) + 133. 122k+1. 

Thus, 11 k+3 + 122k+3 is divisible by 133. 

21. The base is n = 1: the number 23 + 1 is divisible by 32. 
Then we know that 23• + 1 is divisible by 3k+1. Further 

Thus, it remains to prove that ( 23•) 2 - 23• + 1 is divisible by 3. The number 23• 

has remainder 2 when divided by 3. Hence, the remainder of ( 23•) 2 - 23• + 1 when 

divided by 3 is zero. 

22. The base is n = 0, n = 1, and is obvious. To prove the inductive step from 
n ton+ 1, we must show that abn+I + c(n + 1) +dis divisible by m. Let us use 
the fact that the previous member of the sequence abn + en + d is divisible by m, 
and multiply it by b. We have that abn+I + cbn + bd is divisible by m, so it is left 
to prove that c(n + 1 - bn) + d(l - b) is divisible by mas well. Adding (b - l)cn, 
which is divisible by m, we get c + d(l - b), which is also divisible by m, since it 
can be represented as (ab- a+ c) - (a+ d)(b-1). This completes the proof of the 
inductive step. 

23. The base is n = 1: the inequality 21 > 1 is certainly true. 
Now the inductive step. By the assumption 2k > k. Thus, 

2k+1 = 2. 2k > 2k 2: k + 1. 

24. a) Answer: n 2: 3. 
For n = 1, 2, we have 2n < 2n + 1. Let us prove by induction on n that for 

n 2: 3 the inequality 2n > 2n + 1 holds true. 
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The base is n = 3: 23 > 2 · 3 + 1. Tu prove the inductive step we start with 
2k > 2k + 1. Then, 

2k+1 = 2. 2k > 4k + 2 > 2(k + 1) + 1. 

b) Answer: n = 1, n ~ 5. 
For n = 1 we have 21 > 12, and for n = 2, 3, and 4 we have 2n :5 n2. Let us 

prove by induction on n that for n ~ 5 the inequality 2n > n2 holds true. 
The base is n = 5: 25 > 52 • Now the inductive step: we know that 2k > k2. 

Thus, 
2k+1 = 2k + 2k > k2 + 2k + 1 = (k + 1)2 

(we use the inequality 2k > 2k + 1 proved in Problem 24a). 

25. The base is n = 2: t + l = -b, > ¥,. Further, by the inductive assumption 
k!1 + k!2 + .. · + .\; > h- Thus, 

1 1 1 1 1 
k + 2 + k + 3 + ... + 2k + 2k + 1 + 2k + 2 

( 1 1 1) 1 1 1 
= k+l+k+2+ ... +2k +2k+1+2k+2-k+l 

1 1 1 13 
>k+l+ k+2+ ... +2k>24, 

since 2k~1 + 2k~2 > 2k~2 = k!1 · 
26. The base is n = 2, and n = 3: 4 > 1 + 2V2, 8 > 1 + 3 · 2. Since 

2k > 1 + kv'2H, 
we obtain 

2k+1 > 2 + 2kv'2H > 1 + V2. k#. 
It remains to note that V2 · k > k + 1 for k ~ 3. 

27. We need to prove that la1 + a2 + ... + anl :5 la1 I + la2I + ... + lanl for any 
positive integer n and for any real numbers a1 , a2 , •.. , an. We will prove the 
statement using the induction on n. 

The base is n = 1, n = 2. For n = 1 the statement is evident. For n = 2 we 
have la1 + a21 :5 lad+ la2I, which can be proved by a simple case-by-case analysis 
considering all four possible combinations of signs. Now, using the base, we obtain 

la1 +a2 + ... +ak +ak+il :5 la1 +a2 + ... +akl + iak+d· 

Then 
la1 + a2 + ... + aki + lak+il :5 lad+ la2I + ... + iakl + iak+1 I. 

28. Use induction on n. The base is n = 2: (1 + x)2 = 1 + 2x + x2 > 1 + 2x for 
x ;" o. 

Now, by the inductive assumption (1 + x)k > 1 + kx, and we have 

(1 + x)k+i > (1 + x)(l + kx) = 1 + (k + l)x + kx2 > 1 + (k + l)x 

(remember that 1 + x > 0). 

29. The base is n = 1: 
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Now, by the assumption 

Therefore, 

1·3·5· ... ·(2k-1) <-1-. 
2·4·6· ... ·2k - v'2k+l 

1. 3. 5 ..... (2k -1) . 2k + 1 < __ 1_. 2k + 1 = v'2k + 1 _ 
2·4·6· ... ·2k 2k+2 - v'2k+l 2k+2 2k+2 

It remains to prove the inequality 

v'2k+l 1 
2k+2 ~ v'2k+3· 

This inequality is equivalent to the following: (2k + 1)(2k + 3) ~ (2k + 2) 2 , which 
is evident aiter expanding both sides. 

33. The base is n = 1 and n = 2. The proof of the inductive step is also quite 
simple: 

ak+l = 3ak - 2ak-1=3(2k+1) - 2(2k-l + 1) = 2k+l + 1. 

34. Indeed, a3 = 1, a.= -1, as= -2, a6 = -1, a1 = 1, and as= 2. Hence for 
n = 1 and n = 2 we have <>n+6 = an· Then a "strong induction" (see §4 of the 
chapter "Induction") gives us the proof. 

35. We can check directly for the natural numbers 1 through 5. If x is the given 
natural number, then let Fn be the maximum Fibonacci number not greater than 
x. Then we have 0 ~ x - Fn < Fn-1 (since x < Fn+I = Fn + Fn-1), and therefore 
x - Fn can be represented as the sum of several different Fibonacci numbers less 
than Fn-1· 

36. We will prove the following statement by induction on n: 
The remainders of the Fibonacci numbers Fn and Fn+s when divided by 9 are 

equal for all natural n. 
The base is n = 1 and n = 2: F1 = 1, F2 = 1, F9 = 34, F10 = 55, and we see 

that the remainders of F1 and F9 (and of F2 and F10) are equal. 
The proof of the inductive step is very similar to the solution to Problem 34. 

By the inductive assumption, Fk+B and Fk (Fk+7 and Fk-I• respectively) have the 
same remainders when divided by 3. Thus, the remainders of Fk+9 = Fk+B + Fk+7 
and of Fk+l = Fk + Fk-1 are equal. 

It remains to calculate the remainders of the first eight Fibonacci numbers. 
They are 

1, 1, 2, 0, 2, 2, 1, o. 
Thus, the nth Fibonacci number is divisible by 3 if and only if n is divisible by 4. 

42. We will prove the required statement by induction on n. The base n = 1 is 
trivial. 

To prove the inductive step we will first prove that using a calculator we can 
obtain a natural number less than n. To show this, we choose among n, m, and 0 
two numbers of the same parity, and calculate their arithmetic mean x. At least 
one of the two chosen numbers is different from 0. Replace this non-zero number by 
x and repeat the operation for the new trio of numbers. We repeat this procedure 
until one of the positive numbers in the trio becomes less than n (this will eventually 
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happen, because the sum of two positive numbers in the trio decreases after each 
operation). 

Now, let l be the largest natural number less than n which can be obtained 
using a calculator. Suppose that l # n-1. By the assumption, all natural numbers 
1 through l can be obtained using a calculator. If l and n are of the same parity, 
then we can calculate the arithmetic mean y of l and n, which contradicts the 
definition of l since l < y < n. If l and n are not of the same parity, we can 
calculate the arithmetic mean of l - 1 and n and come to the same contradiction. 

43. Hint: the inductive step follows from the formula 

3(2n + 1) - 2(2n-l + 1) = 2n+J + 1 , 

which is true for any integer n. 
44. Let us use induction on m. The base ism = 1: 2n-l ;::: n. This inequality 
follows from the result of Problem 23, and can be proved by induction on n. 

By the inductive assumption 2m+n-2 ;::: mn, and we have 2Cm+1)+n-2 ;::: 2mn ;::: 
(m+l)n. 

45. Hint: first, prove that any square can be cut into several parts which can be 
arranged to form a rectangle with one side of unit length. 

46. The inductive step can be proved as follows: split the given 2n+1 numbers into 
two halves each containing 2n numbers. In each of these halves we can find 2n-l 
numbers with the sum divisible by 2n-1 . Then, out of the remaining 2n numbers, 
we can choose the third set of 2n-l numbers whose sum is divisible by 2n-1 . Let the 
sums of the numbers in the three chosen sets be 2n-1a, 2n-1b, and 2n-1c. Among 
the numbers a, b, and c we can find two numbers of the same parity. The union of 
corresponding sets is a set of 2n numbers whose sum is divisible by 2n. 

47. For n circles the answer is n(n - 1) + 2. To prove it, we can use induction on 
n. The base (n = 1) is clear. 

To prove the inductive step we temporarily remove the (k+ l)st circle. By the 
inductive assumption the number of parts into which k circles dissect the plane is 
not greater than k(k - 1) + 2. Now we "restore" the removed circle. It intersects 
each of the k circles at no more than two points, and, thus, the number of parts of 
the plane increases by at most 2k. The formula k(k - 1) + 2 + 2k = k(k + 1) + 2 
completes this part of the proof. 

An example of the required dissection can also be obtained by induction. We 
will construct examples (one for each natural number n) with the following prop­
erties: 

a) no three circles meet at the same point; 
b) the interiors of all n circles have a common point; 
c) the number of parts into which our n circles dissect the plane equals 

n(n-1)+2. 
The base n = 1 is again trivial. 
To prove the inductive step we start with the configuration (which is assumed 

to exist) of,,. ~ircles that dissect the plane into k(k-1)+2 parts. Let us add another 
circle which passes through a point lying inside all k circles of the configuration. 
We can choose this (k + l)st circle in such a way that it does not pass through the 
points of intersection of the other circles. This new configuration of k + 1 circles 
satisfies all the required conditions. 



244 MATHEMATICAL CIRCLES (RUSSIAN EXPERIENCE) 

For n triangles the answer is 3n(n - 1) + 2. The proof is similar to the proof 
above, except that two triangles can intersect in at most 6 points. 

To construct a configuration of n triangles dissecting the plane into 3n( n- l) + 2 
parts, one can draw n congruent equilateral triangles in such a way that they have 
the same center and no three of them meet in a point. 

48. We use induction on the number n of circles. The base is n = 1. 
To prove the inductive step, temporarily remove the (k + l)st circle and its 

chord. By the inductive assumption the parts of the plane created by k circles with 
their chords can be colored using 3 colors (say, red, blue, and green) satisfying the 
given condition. 

Now, let us replace the missing circle and its chord. The chord divides the 
interior of the circle into two parts. Let us change the colors in one part using the 
scheme: red --> blue, blue --> green, green __, red, and change the colors in the other 
part using the scheme: red --> green, green --> blue, blue --> red. The colors of the 
parts lying outside the (k+l)st circle remain unchanged. In the resulting coloring, 
the colors of adjacent regions of the plane are different. 

49. The principle of mathematical induction implies the "well order principle". 
Indeed, suppose that the principle of mathematical induction holds true and the 
"well order principle" does not. Take a non-empty set S of natural numbers which 
does not contain a least element. Let us prove by induction that any natural number 
n does not belong to S (which contradicts the fact that Sis non-empty). 

The base is n = 1. If 1 E S, then 1 is the least element of S. 
Now, the inductive step. By the assumption, the numbers 1, 2, ... , k do not 

belong to S. Then, if k + 1 ES, we have that k + 1 is the least element of S. 
Now let us prove that the well order principle implies the principle of mathe­

matical induction. 
Suppose that the well order principle is true while the principle of mathematical 

induction is not. Consider a series of propositions such that the first proposition 
is true and for any natural k the truth of the kth proposition in the series implies 
the truth of the ( k + 1 )st proposition. Form the set of natural numbers n such that 
the nth proposition in the series is not true. Assume this set is non-empty, and 
let n0 be its least element. Then the (no - l)th proposition is true, but the noth 
proposition is not. This contradiction to our assumption completes the proof. 

10. DIVISIBILITY-2 

3. Change the solution to Problem 2 by subtracting the equalities instead of adding 
them. 

5. This is an immediate corollary of Problem 4. 

8. 3099 = (-1)99 = -1(mod31), 61 100 =(-1)100 =1(mod31). 

9. b )By direct multiplication, we can check that 

an+ bn =(a+ b)(an-1 _ an-2b + ... + (-l)n-lbn-1). 

10. Consider the summands with the numbers k and n-k; that is, kn and (n-k)n. 
Since n is odd, the remainders of kn and (-k)n have opposite signs. Thus, the sum 
of these two summands is divisible by n. Since the sum can be split into (n - 1)/2 
such pairs we obtain the required result. 
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11. No number of the form 8k + 7 can be represented as the sum of three squares. 
Indeed, a perfect square has a remainder of 0, 1, or 4 when divided by 8. It is easy 
to see that the sum of three such remainders cannot give us the remainder 7. 

13. Use the identity x 2 - y2 = (x - y)(x + y). 

14. Hint: show that if xis a convenient number, then 1000001-x is also convenient. 

15. The answers are a) no; b) no. Indeed, the last digit of a number determines 
the last digit of its square. After analyzing all possible last digits and their squares, 
we can see that the last digits of the squares can be equal only to 0, 1, 4, 5, 6, and 
9. This can be expressed, of course, using the language of "mod 10". 

16. There are several answers. For example, -1 or n - l. The remainder of the 
given number when divided by n is l. 

17. The answer is 5. 

18. The answer is 2858. 

19. a) Since k is divisible by 3 we conclude that k - 1 = 2 (mod 3). To complete 
the proof it suffices to remember that squares cannot have a remainder of 2 when 
divided by 3. 

b) Since k is even but not divisible by 4 we have k + 1 = 3 (mod 4). Now we 
use the fact that squares can be congruent only to 0 or 1 (mod 4). 

20. No, since n2 +n+1 cannot be divisible by 5. Indeed, there are five congruence 
classes modulo 5. If n = 0 (mod 5), then n2 + n + 1 = 1, if n = 1 (mod 5), then 
n2 + n + 1 = 3, et cetera. So n2 + n + 1 is never congruent to zero, i.e. n2 + n + 1 
cannot be divisible by 5, and therefore, by 1955. 

22. We prove that the sum of the divisors is divisible by 3 and by 8. To prove 
that this sum is divisible by 3 we split it into pairs of divisors (k,n/k) (notice that 
k of n/ k since n cannot be a perfect square. Why?) and prove that for each of these 
pairs the sum of the numbers in it-that is, k + n/k-is divisible by 3. Indeed, k 
cannot be divisible by 3 (otherwise, n would be divisible by 3, which is obviously 
impossible). Therefore, either k = 1 (mod 3) or k = 2 (mod 3). In the former case 
n/k = 2 (mod 3) and in the latter case n/k = 1 (mod 3) (we recall that n + 1 is 
divisible by 3). Thus, in any case, k + n/k is a multiple of 3. The second part of 
the proof (regarding divisibility by 8) is similar. 

23. a) Let us consider the remainders of the members of the sequence when divided 
by4. We have a1 =a2 =1 (mod 4). Consequently, a3 = 1·1+1 = 2, a4 = 2·1+1 = 
3, a5 = 3 · 2 + 1 = 3, a6 = 3 · 3 + 1 = 2, a7 = 2 · 3 + 1 = 3, and we have a cycle 
which does not contain zero remainders. 

b) Consider the remainders of the members of the sequence when divided by 
an. Simple calculation shows that an+1 = 1, an+2 = 1, an+3 = 2, ... , an+e = 22. 
Thus, an+e-22 is divisible by an, and ifn+6 > 10, then, obviously, an+e >an> 1. 

25. Hint: all the powers of ten, starting from 100, are divisible by 4. 

26. A number is divisible by 2n (or by 5n) if and only if the number formed by its 
last n digits is divisible by 2n (or by 5n). 

28. The last two digits of the square of n depend only on the last two digits of n 
itself. Suppose n = ... ab, and we have ab2 = (10a + b)2 = 100a2 + 20ab + b2• It 
is clear that the tens digit of the number b2 must be odd. A case-by-case analysis 
shows that the units digit must then be equal to 6. 
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29. Hint: consider remainders modulo 16. 

32. The answers are a) no; b) no. Use remainders modulo 9. 

33. The answer is 7. Use remainders modulo 9. 

34. The original number and the reversed number have equal sums of digits and, 
therefore, equal remainders when divided by 9. 

35. This can be done in six different ways: 1155, 4155, 7155, 3150, 6150, 9150. 
Indeed, the last digit must be 0 or 5. Then our number is divisible by 3; that is, 
the sum of its digits must be divisible by 3. 

36. There are two such numbers: 6975 and 2970. See the solution to the previous 
problem. 

37. This is the number 1023457896. Hint: first, any number which has all 10 digits 
in its decimal representation is divisible by 9. Second, divisibility by 4 depends 
only on the last two digits of a number. Therefore, the required number starts with 
10 ... and must end with an even digit. A simple case-by-case analysis leads us to 
the answer. 

38. Hint: find a cycle in the remainders of the numbers 2n when divided by 3, and 
also in the units digits of these numbers. 

39. The answer is no. By the usual test (see Problem 31) we have 1970 = 8 (mod 9). 
But no perfect square is congruent to 8 modulo 9. 

40. Since after the first subtraction the result is divisible by 9, all the numbers we 
obtain in the process have the sum of their digits no less than 9. Therefore, if the 
original number was not greater than 891 = 9 · 99 then the proof is now obvious. 
The investigation of the rest of the set of three-digit numbers is left to the reader. 

41. Since 44444444 < 104444 it is easy to see that A < 44440. Therefore, B < 5 · 9 = 
45, which implies that the sum of its digits is a one-digit number. We also know 
that A and B (and the sum of its digits as well) are congruent to 44444444 modulo 
9. That is, they all have remainder 7 when divided by 9. Thus, the sum of the 
digits of B must be 7. 

43, 44. These numbers are divisible by 11. 

45. The number aabb is divisible by 11 while cdcdcdcd is not. 

46. The set {l, 2, 3, 4, 5, 6} cannot be split into two triples in such a way that the 
difference of the sums of the numbers in these triples is divisible by 11. 

47. These two numbers have equal remainders when divided by 9, and also when 
divided by 11. 

48. The answer is no. Indeed, if you multiply any of the given four digits by 9, 
then you cannot obtain one of these digits again in the units place of the answer. 

49. Indeed, aba = lOla + lOb = 7(14a + b) + 3(a + b). 

50. Since 2(a+b+c) = 0 (mod 7), we get abc = lOOa+lOb+c = 2a+3b+c (mod 7) = 
b - c (mod 7). Therefore, abc is divisible by 7 if and only if b - c is divisible by 
7. Taking into account that both digits band care less than 7, the only way this 
difference can be divisible by 7 is if the two digits are equal. 

51. a) Since b) we have abcdef = lOOOabc +def= def - abc (mod 7). 
b), c) A number is divisible by 7 (or by 13) if and only ifthe following operation 

gives us a number divisible by 7 (or by 13): starting at the right of the number, 
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group the digits in threes and alternately add and subtract the resulting numbers. 
Example: 10345678. The operation described gives us 678 - 345 + 10 = 343 which 
is divisible by 7. Thus, the original number is divisible by 7 as well. Actually, it 
equals 7 · 1477954. The proof of these divisibility tests is left to the reader; they 
use the fact that 1001 is divisible by 7 and by 13. 

52. A number is divisible by 37 if and only if the sum of the numbers formed by the 
triples of its consecutive digits is divisible by 37. Example: 830946. The described 
operation gives us 830 + 946 = 1776 which is divisible by 37. Therefore we can 
conclude that 830946 is also divisible by 37. Indeed, it equals 37 · 22458. The proof 
is similar to that of Problem 51. It uses the fact that 1000 = 1 (mod 37). 

53. The answer is no. Since abc - cba = 99(a - c), where a and c are different 
digits, we have a number which is divisible by 11, but not by 112. 

54. Answer: this number is written with three hundred l's. Indeed, it is divisible 
by 3 and it is divisible by 333 ... 33 (one hundred 3's), which are co-prime. To prove 
that this is the minimum number required we notice first that the required number 
must have a number of digits divisible by 100-otherwise it would not be divisible 
by 111 ... 11 (one hundred l's). Secondly, the numbers 111 ... 11 (one hundred l's) 
and 111 ... 11 (two hundred l's) are not divisible by 3. 

55. The answer is no. Assuming the opposite, let us consider remainders mod­
ulo 5. Since the sum of the first n natural numbers is n( n + 1) /2, we have that 
2(n(n + 1)/2 + 1) = n(n + 1) + 2 must be divisible by 5 (indeed, the last digits of 
n(n+ 1)/2+1 would be ... 1990). Substituting all five possible remainders modulo 
5, that is, 0, 1, 2, 3, 4, and 5, we observe this is not true, which proves that the 
answer is no. 

57. The answer is 69. Write 102a + b = 90a + 9b. Simplify to find 3a = 2b, and 
remember that a and b are digits. 

58. Since any number of the form aabb is divisible by 11, we know that the square 
root of our number must be a two-digit number divisible by 11 (that is, with equal 
digits). Calculating squares for these 9 numbers 11 through 99, we see that the 
only answer is 7744 = 882 . 

59. The answers are 625 and 376. Hint: the units digit must be 0, 1, 5, or 6. Then 
analyze the tens digit similarly, then the hundreds digit. Remember that neither 
000 nor 001 is a valid three-digit number. 

60. We can prove that sooner or later this number will be divisible by 11. Indeed, if 
we denote some number in this series by x, then the next number will be 100x+43 = 
x - 1 (mod 11). This means that after no more than 10 operations the current 
number will be congruent to zero modulo 11. 

61. First, 10001 = 73 · 137, which is not obvious but nevertheless true. Second, to 
prove that any other number 10001 ... 10001 of the series is composite, we multiply 
it by 1111. The result has 4k digits (k > 2) and, therefore, is divisible by x = 
1000 ... 001 = 102k + 1 (indeed, 

~= 1000 ... 001 ·~). 
4k digits 2k+l digits 2k digits 

Finally, we use the fact that x is greater than 1111 and less than the original 
number. Therefore, the original number must be divisible by x/ god(x, 1111) > l. 
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63. This equation does not have integers roots. Its left side is always divisible by. 
3, but its right side never is. 

65. The solutions are of the form {x = 16k - 2, y = -7k + l}, where k takes on 
all integer values. 

66. Our problem can be reduced to the solution of an ordinary Diophantine equa­
tion. Set p = z, and we have 

2x+3y= 11-5p, 

where we consider p as an unknown parameter, not as a variable. Using the same 
technique as before, we have the following answer: x = 5p+3q-11, y = 11-5p-2q, 
and, of course z = p, where p and q are any integers. 

There are no solutions in natural numbers, since if any of the numbers x, y, 
and z is greater than 1, then the sum 2x + 3y + 5z is greater than 11. 

67. It is possible to move the pawn to the neighboring box if and only ifthe numbers 
m and n are relatively prime. Indeed, if we make k moves to the right (shifting the 
pawn m boxes to the right with each of these moves) and l moves to the left, then 
the resulting shift equals km - ln boxes to the right (a negative result means a shift 
to the left). The number 1 can be represented by such an expression if and only 
if the numbers m and n are relatively prime. The question about the minimum 
number of moves to get to the neighboring box is far more complicated. Hint: it is 
convenient to begin with the following reformulation. Given two relatively prime 
natural numbers m and n, find natural numbers k and l such that mk - nl = 1 and 
the absolute value of the sum Jk + !J is as small as possible. 

68. The answers are (-4, 9), (14, -21), (4, -9), and (-14, 21). Analyze all possible 
representations of the prime number 7 as the product of two integers. 

70. There are no integer solutions. Indeed, in the equation (x-y)(x+y) = 14 both 
factors in the left side are of the same parity, and therefore their product must be 
either odd (if both expressions x + y and x - y are odd) or divisible by 4 (if both 
x+y and x-y are even). But the number 14 belongs to neither of these two types. 

71. The answers are (2, 0), (2, 1), (-1, 0), (-1, 1), (0, 2), (1, 2), (0, -1), (1, -1). 
We transform the original equation into x(x-1) +y(y- l) = 2. Since the product 
t(t - 1) is never negative and is greater than 2 if t > 2 or t < -1, we have only a 
few pairs (x, y) to consider. 

73. There are no integer solutions. Hint: use remainders modulo 7. 

75. There are no integer solutions. Hint: use remainders modulo 5. 

76. There are no integer solutions. Hint: use remainders modulo 8. 

79. Answer: there are three families of solutions (1, a, -a), (b, 1, -b), (c, -c, 1), 
where a, b, and care arbitrary integers. And there are three more solutions: (1, 2, 3), 
(2, 4, 4), (3, 3, 3). Hint: if all numbers are positive, at least one of them is not greater 
than 2 or they all are equal to 3. If one of the numbers-say, a-is negative, then 
1/b + 1/c > 1, and this means that either b or c is 1. 

80. The answers are x = ±498, y = ±496 and x = ±78, y = ±64 (the signs 
can be chosen independently). To prove this, we rewrite the equation as follows: 
(x - y)(x + y) = 2 · 2 · 7 · 71 (the number 71 is prime). We can temporarily 
assume that x and y are positive (later we can supply these numbers with arbitrary 
signs). We have only two representations of the number 1988 as the product of two 
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positive integers of equal paXity (see the solution to Problem 70): 1988 = 2 · 994 
and 1988 = 14 · 142. Setting the factors x - y, x + y equal to these completes the 
solution. 

81. If n = pq (where p, q > 1), then l/n = l/{n - 1) - l/n(n - 1) and l/n = 
l/p(q-1)-1/pq(q-l). If n is prime, then from the original equation n(y-x) = xy 
and, therefore, xy is divisible by n. So, either x or y is divisible by n. It is clear 
that y is divisible by n since otherwise x ~ n and l/x - l/y cannot be equal to 
l/n. Thus y = kn and x = kn/(k + 1), and k = n - l. Thus, there is only one 
representation of l/n: l/n = l/{n - 1) - l/n(n - 1). 

82. Answer: there are no integer solutions. Hint: rewrite the equation as x3 = 
(2y - 1){2y + 3) and make use of the fact that the factors on the right-hand side 
are relatively prime. 

83. This is the famous Pythagorean equation. Answer: all the solutions can be 
described as follows: 

x = (a2 - b2 )c , 
y=2abc, 

z = (a2 + b2 )c, 

where a, b, and c are arbitrary integers. Hint: first, make x, y, and z pairwise 
relatively prime by dividing them by their common G.C.D. 

For a complete solution, see [90], Chapter 17. 

84. This is another famous equation, called Pell's equation after the XVII century 
English mathematician. Hint: first, we will look for non-negative solutions only. 
One of these is easy to find: it is the pair {l, 0), and we can generate all other 
solutions starting from this one. More precisely, if the pair (a, b) is a solution to 
our equation, then the pair (3a + 4b, 2a + 3b) is the next solution. 

For a complete solution of the problem, see [90], Chapter 17. 

86. We know that ka - kb is divisible by kn. Thus, k(a - b) = mkn, and we have 
a - b = mn, which proves the result. 

87. Fermat's "little" theorem implies that this remainder isl. 

89. We have 3003000 = (300500) 6 = 1 (mod 7). Similarly, 3003000 = 1 (mod 11) and 
also (mod 13). Therefore, 3003000 - 1 is divisible by 7, by 11, and by 13; that is, 
by 1001. 

90. The answer is 7. Hint: use Fermat's "little" theorem. 

92. Hint: prove that the given number is divisible by 31. 

93. It is sufficient to write the following short chain of equalities and congruences: 
(a+b)P = (a+b) = a+b::a•+b"(modp). 

94. Hint: prove that for any integer x the congruence x5 = x (mod 30) holds true 
by showing that x5 - x is divisible by 2, 3, and 5. 

95. a) Hint: prove that p• + qP - p - q is divisible by p and by q. 

96. Let us set b = a•-2 . Then, ab= a•- 1 = 1 (mod p). 

97. Let us split all the numbers 2 through p - 2 into pairs such that the product 
of two members of any pair is congruent to 1 modulo p (we leave to the reader the 
proof of the possibility of such a splitting). Thus, the product of all the numbers 2 
through p - 2 is congruent to l. Hence p! = 1 · (p - 1) = p - 1 = -1 (mod p). 
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98. Since (n8 + l)(n8 - 1) = n16 -1=O(mod17), one of the factors must be 
divisible by 17. 
99. a) The number 111 ... 11 (pones) is equal to (10" - 1)/9. But 10• - 1 is not 
divisible by p, since 10" - 1=10 - 1 = 9 (mod p). 

b) The number 111 ... 11 (p-1 ones) is equal to (10•- 1 -1)/9, and 10•-1 -1 
is divisible by p, since pis relatively prime to both 10 and 9. 
100. Hint: use the following congruences: 10• = 10 (mod p), 102• = 100 (mod p), 
... , 108" = 108 (mod p). 

11. COMBINATORlCS-2 

7. The answer is Ca0) = 120. This is a straightforward corollary of the definition 
of the number of combinations. 
8. The officer can be chosen in three ways, the 2 sergeants in (~) ways, and the 20 
privates in (~g) ways. Thus a group for the assignment can be chosen in 3 · m · (~g) 
ways. 
9. a) Each triangle with vertices at the marked points has either one vertex on the 
first line and two vertices on the second, or two vertices on the first line and one on 
the second. There are 10 · ('i) triangles of the first kind and C~) · 11 of the second 
kind. Therefore the answer is 10 · (~1 ) + 11 · (12°). 

b) Answer: C~) · Ci) = 2475. 
10. Add up the numbers of ways to choose exactly 0, 1, ... , and 5 words from the 
given set. The answer is ('(,5) + (\5) + C{) + Ci) + (';) + Ci) = 4944. 

11. Let us choose three couples first. This can be done in (:} ways. Three 
representatives from these couples can be chosen in 2a ways (either husband or wife 
from each of the three couples). Thus there are (:) · 2a = 32 ways to choose a 
committee. 
12. There are three possible cases: only Pete is on the team, only John is on 
the team, or neither one of them is on the team. There are G~) different teams 
with Pete but without John (because ten of Pete's teammates can be chosen only 
from the other 29 students of the class). Similarly, there are (~~) teams with John 
but without Pete. And finally there are (~i) teams without either. Therefore the 
answer is (~~) + (~~) + (~i) . 
13. Since the order of the vowels, as well as of the consonants is known, everything 
is defined by the places occupied by the vowels. There are m = 35 ways to choose 
3 places for the vowels in a word consisting of 7 letters. 
14. There are (\2) teams with no boys at all, 10 · (~2) teams with 1 boy and 4 girls, 
C~) · (~2) teams with 2 boys and 3 girls, and Ca0) · Ci) teams with 3 boys and 2 
girls. Thus there are (\2) + 10 · (~2) + (12°) · (1a2) + ('g") · (',;') = 23562 different teams 
which satisfy the conditions of the problem. 
15. First, let us choose the places for 12 white checkers on the 32 black squares of 
the chessboard. This can be done in (~~) ways. After the white checkers are placed, 
there are (~g) ways to put 12 black checkers on the 20 free black squares. Answer: 
@ . @ = 32!/12!12!8!. 

16. The solution is analogous to that of Problem 6. Answers are a) ('i). (15°). m/3!; 
b) ('i). C~)/2. 
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17. a) Let us choose one of the four aces, then choose separately nine other cards 
from the 48 cards which are not aces. Since the first choice can be made in 4 ways 
and the second in (4,,8) ways, the result is 4 · (~8) 

b) There are (~~) ways to choose any 10 cards from the deck, and (~~) ways to 
choose 10 cards, none of which are aces. Thus there are (~~) - (~~) ways to choose 
10 cards so that there is at least one ace. 

18. There are two cases, depending on the parity of the first digit of the number. 
In each of the cases you can calculate the number of ways by choosing the places 
for the odd digits. The answer is: m · 56 + m · 4 · 55 . 

19. Hint: find all the representations of the numbers 2, 3, and 4 as the sums of 
several natural numbers. Do not forget that the first digit cannot be zero. The 
answers are: a) 10; b) 1+(~)+9+9+1 = 55; c) 1+2(i)+(i)+(~)·3!/2!+G} = 220. 

21. a) Answer: ('\;5). 
b) Let us suppose that the results are already known. Now we have to choose 

exactly three numbers from the six "lucky" numbers and three numbers from 39 
"unlucky" ones. Thus the result is m · (3;') = 182780. 

22. The answer is the number of all subsets of a 10-element set; that is, 210 = 1024. 

23. A way to go down the flight of stairs is simply the choice of several steps you 
are going to step on. Therefore, the question is equivalent to the calculation of the 
number of the subsets of a 7-element set, and the answer, of course, is 27 = 128. 

25. Let us prove that the number of subsets of the given set of objects with evenly 
many elements is the same as the number of subsets with oddly many objects. 
We begin by choosing one of the objects-say, A-which will play a special part 
further in the solution. Now, we will split all the subsets in pairs in such a way that 
each pair consists of two subsets, one of which always has evenly many elements 
and another which contains oddly many elements. To do this, we consider one 
arbitrary subset of the given set of objects and, if it contains A as its element, we 
remove A from it; if it does not, we add A to it. The resulting subset will be in the 
same pair with the original one, and the number of elements in these two subsets 
have different parity. It is easy to see that if the subset S generates the subset S', 
then this construction applied to S' gives us S. Therefore, we have the required 
splitting, and the proof is complete. 

26. Use the result of Problem 25. 

27-28. Hint: use induction on the number of Pascal's triangle numbers on the 
diagonal in question. 

29. Apply the results of Problems 27 and 28. 

30. The number of ways of going downward from the "summit" of Pascal's triangle 
to the number occupying the nth place in the 2nth row equals (2,:'). Each of these 
ways passes through exactly one of the numbers in the nth row. Since the number 
of such ways passing through the kth number is equal to (~)(n~k) = ((~))2, we 
can add up these numbers of ways to obtain the required total. This geometric 
interpretation of the algebraic equality to be proved demonstrates one of the most 
beautiful tricks in elementary combinatorics. 

34. Let us call the 12 pennies "balls" and the five purses "boxes". Now the problem 
is almost the same as Problem 31. Answer: (';~i') = (~1 ) = 330. 
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35. This time the 12 books are the "balls", and the three colors are the "boxes". 
The problem turns into a question similar to Problem 32. Answer: C2t!;-') = 
Ci) = 91. 
36. To cut the necklace into 8 parts it is necessary to choose 8 places from the 30 
where the cuts are to be done. Therefore the result is (~0). 

37. If candidates are "boxes" and voters are "balls", the problem is similar to 
Problem 32. Answer: (3.4). 
38. Hint: regard the postcards as "balls" and the types as "boxes". Answers: a) 
(2.'); b) c;). 
39. a) The first passenger can get off the train at any one of n stops. The second 
passenger can also get off the train at any one of n stops. Thus there are n · n = n 2 

different ways to get off the train for these two passengers. Since the third passenger 
can choose any of n stops, there are n·n2 = n3 different ways for three passengers to 
leave the train. It is clear now that the same argument for the remaining passengers 
leads to the answer n rn. 

b) This is again a problem about "balls" (passengers) and "boxes" (stops). 
Thus the answer is (n~~~ 1 ). 

40. This problem is identical to the problem of representing the number 20 as the 
sum of three non-negative integers. Answer: (2,2) = 231. 

41. Hint: find the answers for the black and for the white balls separately, then 
multiply the results. Answer: C8

6) • C~). 
42. Hint: divide the process of the distribution of the fruits into four steps: apples, 
orange, plum, and tangerine. Answer: (~) · 3 · 3 · 3 = 756. 

43. Since there are (~) different ways to put balls of each of three colors into six 

different boxes, the result is (~)3. 
44. a) Each of n voters can choose any of n candidates. Thus the result is nn. 

b) Consider the members of a community as "boxes", and the votes as the 
"balls". Answer: (2;::11). 
45. Let us temporarily repaint the red and the green balls black, and line the black 
balls up in a row. Arranging 10 black balls and 5 blue balls so that no two blue 
balls are next to each other is the same as placing 5 blue balls into 11 "buckets" 
between the black balls, and at the ends of the row of the black balls, so that no 
two blue balls are in the same buckets. That is, we just choose 5 buckets out of 
11-this can be done in ( ~1 ) ways. Finally, there are Ci) ways to repaint the black 
balls red and green. Thus, the answer is Cii) ('5°) = 116424. 

46. Hint: we know that 1000000 = 26 • 56 . Each factor can be completely deter­
mined by the number of 2's and 5's in its decomposition. The total number of 2's 
is 6, and the total number of 5's is the same. Answer: [ m] 2 = 784. 

4 7. Let us remove the chosen books and consider the seven remaining books. 
Between any two of them and at the ends of the row, we either have a gap (caused 
by a missing book) or we don't. The set of the gaps uniquely specifies the set of 
the chosen books. The answer therefore is (~) . 

48. Since there are only two blue beans, the type of necklace is fully determined by 
the distance between these two beans as measured by the minimum number of the 
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beans (regardless of their color) between them. This quantity can take only three 
values 0, 1, and 2. Hence there are only 3 different types of necklaces. 

49. These are applications of the basic results of the chapter. The answers are a) 
(3~) = 27405; b) 30. 29. 28. 27 = 657720. 

50. Let us calculate the number of all six-letter words first. Any of 26 letters can be 
in each of 6 places. Thus it is possible to write 266 different six-letter words using 
the 26 letters of the English alphabet. And there are 256 words without the letter A 
(in this case only 25 letters can be used). Therefore, there are 266-256 = 64775151 
words containing at least one letter A. 

51. It is possible to start drawing the path at any of the six vertices of the hexagon. 
The second point can be chosen in 5 ways, and so on. Thus, there are 6! ways to 
draw a path. But each path was counted exactly six times during this calculation, 
since each of its vertices could be chosen as the first one. Therefore, there are 
6!/6 = 5! paths. 

52. a) A number divisible by 4 and written with the given digits must end with 
12, 24, or 32. In each of these cases there are two different ways to use two other 
digits at the beginning of the number. The answer is 3 · 2 = 6. 

b) In this case the number must end with 12, 24, 32, or 44. Each of 4 digits 
can be used in any of the two remaining places. Therefore the result is 4 · 42 = 64. 

53. Everything is defined by specifying the three days when the father gives pears 
to his daughter. Since there are G) ways to choose three out of the five days, the 
answer is G). 
54. There are (26°) ways to choose 6 actors for the first performance. In each of 
these cases 14 actors did not take part in the first performance. Thus there are ('64) 

ways to choose 6 actors for the second performance. The answer is (26°) ('64). 

55. In every decimal place each of the digits is used exactly 42 = 16 times. Answer: 
16 · 1111 · (1 +2+3+4)=17760. 

56. The 6 cards can be distributed among the four suits in two ways: 1 + 1 + 1 + 3 
or 1+1+2 + 2. Let us calculate the number of different choices for the first variant. 
The suit containing 3 cards can be chosen in 4 ways. There are C33) ways to choose 
3 cards from this suit. One card from each of the remaining suits can be chosen 
in 13 ways. Thus, the result is 4 · Ci) · 133 . A similar calculation leads to the 

result (;} · ('i) 2 · 132 for the second variant of distribution. Therefore, the answer 

is 4 ·Ci)· 133 + (;). Ci) 2 . 132 . 

57. Answer: m · ('i) = 5720. See the solution to Problem 41. 

58. It is obvious that there are 10 one-digit integers satisfying the conditions of the 
problem. Let us calculate how many two-digit integers there are. The first digit of 
a two-digit integer can be any digit but 0. The second digit can be any of 9 digits 
which differ from the first one. Therefore there are 92 two-digit integers with two 
different digits. There are 93 three-digits integers which satisfy the conditions of 
the problem, because there are 9 digits (any digit but the one used as the second 
one) to choose from for the third place. Continuing in the same way, we get the 
final result: 10 + 92 + 93 + 94 + 95 + 96. 
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59. Let us start with another problem: 
How many ways are there to take 18 cards from a deck of 96 cards (including 

4 aces) so that these 18 cards contain exactly 2 aces? 
First, we choose two of the four aces. Second, we choose sixteen other cards 

from the 32 non-aces. Therefore, the answer to the new problem is m · (~~). Let 
us now notice that by choosing 18 cards from the deck we have divided the deck 
into halves. But each possible division has been counted twice. Thus, the result is m. (~~)12. 
60. a) The rook can either visit or not visit each of the 28 non-border boxes. The 
answer, therefore, is 228 . 

b) The answer is the number of representations of the number 29 as the sum 
of seven natural numbers whose order is significant. Answer: (~8). 
61. Let us suppose that none of the rowers has been chosen from those ten who 
wanted to be on the left side. Then four rowers for the left side have been chosen 
from the nine who can sit on either side. And the four rowers for the right side 
have been chosen from seventeen (the twelve who want to sit on the right side, 
and those five from the nine without preferences who were not chosen for the left 
side). Thus in this case there are ('g) · l:) · ('J) ways to make a choice. Now let us 
suppose that exactly one rower has been chosen from those who want to sit on the 
left side. Then another three left-side rowers have been chosen from the nine. And 
four right-side rowers have been chosen from eighteen. This gives us ( \0) · m · ( ~8) 
choices for this case. Taking into account three final cases (two, three, or four 
rowers to choose from those ten who wanted to be on the left side) we get the final 
result: ('o°). m. ('J) + (\"). m. (~8) + ('~). m. (1:) + (\0). m. (~o) + ('~). (~). (~1). 

62. The rectangle can be defined without ambiguity by its upper left and lower 
right vertices. To contain the marked box, the upper left vertex must be in a row 
with a number less than or equal to p and in a column with a number less than 
or equal to q. The lower right vertex must be in a row with a number greater 
than or equal to p and in a column with a number greater than or equal to q. 
Thus there are p · q different positions for the upper left vertex and there are 
( m - p + 1) · ( n - q + 1) different positions for the lower right vertex. Therefore 
there are p · q · (m -p + 1) · (n - q + 1) rectangles containing the marked box. 

63. The grasshopper has to make 27 jumps; 9 jumps in each direction. Let us 
denote jumps in the first direction by the letter A, jumps in the second direction 
by the letter B, and jumps in the third direction by the letter C. Now each route of 
the grasshopper can be defined without ambiguity by the 27-letter word in which 
each of the letters A, B, C is used exactly 9 times, and the problem is reduced to 
these words. Doing this in the same way as in Problems 17-21 from the chapter 
"Combinatorics-I" we obtain the answer: 27!/(9!)3. 

12. INVARIANTS 

4. Answer: 21! - 1. 

5. We can use the following quantity as an invariant: each sparrow is supplied with 
a special index equal to the number of the tree it is currently sitting on (counting 
from left to right). Then the sum S of these indices is the required quantity. Indeed, 
after the flights of any two birds only their indices change-one increases by some 
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number x and another decreases by the same number. Thus, the sum S is invariant. 
Initially, the value of S is 1+2 + 3 + 4 + 5 + 6 = 21, and if all the sparrows are on 
the same tree with number k, then the value of S is 6k. Since 21 is not divisible by 
6 we can conclude that the sparrows cannot all gather on one tree. 

On the other hand, if there are seven sparrows and seven trees, then initially 
S = 28 which is divisible by 7, and we cannot exclude the possibility of all the 
sparrows gathering on one tree. In fact, the reader can easily construct a sequence 
of flights which results in the required situation: all the sparrows are together on 
the middle tree. 

6. Hint: prove that the parity of the number of black boxes in the table is invariant. 

7. Hint: prove that the parity of the number of black boxes among the four corner 
boxes is invariant under recolorings. 

8. This problem can be solved in just the same way as Problem 7, if we consider a 
set of four boxes with the same property. One such set is the four boxes forming a 
2 x 2 square in the upper left corner of the table. 

9. Hint: use as the invariant the parity of the sum of all the numbers on the 
blackboard. 

13. a) Use the following coloring of the board: the rows with the odd numbers are 
colored black, and the rows with the even numbers are colored white. Then the 
1 x 4 polyminos always cover an even number of white boxes regardless of their 
position on the board. Furthermore, the one special polymino always covers an 
odd number of white boxes. These two facts together imply that the entire number 
of white boxes covered is odd, but this number must be 32. This contradiction 
completes the proof. 

c) Apply the analogous coloring using four colors. Since each polymino covers 
either four boxes of the same color or four boxes colored with four different colors, 
we can conclude that the difference between the numbers of the boxes of color A 
and of color B is divisible by 4 (regardless of which colors A and B we choose). 
An easy calculation shows that there are 2652 boxes of the 1st color, 2652 boxes of 
the 2nd color, 2550 boxes of the 3rd color, and 2550 boxes of the 4th color. The 
difference between the number of the boxes of the 1st and the 3rd color is 102 which 
is not divisible by 4. This completes the proof. 

14. Let us consider the coloring using 4 colors shown in Figure 154. Then each 2 x 2 
tile contains exactly one box of color 1, and each 1 x 4 tile contains none or two boxes 
of color 1. Therefore, the parity of the number of the 2 x 2 polyminos coincides with 
the parity of the number of boxes of color 1. This proves the statement: after the 
parity of the number of 2 x 2 polyminoes changed (when one was lost) we cannot 
cover the same board without overlapping. 

2 3 2 3 
1 4 1 4 
2 3 2 3 
1 4 1 4 

FIGURE 154 
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16. Let us use as the invariant the remainder of the number of heads of the Dragon 
when divided by 7. Using either of the swords does not change this remainder, and 
since 100 and 0 are not congruent modulo 7 the answer is, alas, negative. 
17. The remainder when divided by 11 of the difference between the number of 
dallers and the number of dillers belonging to the businessman can be used as the 
invariant. Since initially this difference is 1, the businessman can never make this 
difference equal to zero. 

18. Since after every operation of Dr. Gizmo's machine the number of coins in­
creases by 4, then the remainder of the number of coins when divided by 4 is 
invariant. But 26 and 1 have different remainders when divided by 4. Therefore we 
cannot end up with 26 coins. 

20. The answer is 8. Since the remainders of a natural number and of the sum of 
its digits when divided by 9 are the same, the remainder of 81989 coincides with the 
remainder of the final result x. Hence, x has remainder 8 modulo 9, and we know 
that x is a digit. We conclude that x = 8. 

21. Its type is B. Consider the parities of the differences N(A) - N(B), N(B) -
N(C), and N(C) - N(A), where N(X) is the number of type X amoebae. These 
parities do not change in the course of the merging process. This means, in partic­
ular, that in the end (when there is only one amoeba in the tube) the numbers of 
A-amoebae and C-amoebae have the same parity, which is possible only if the only 
amoeba left belongs to type B. 

22. After each move the sum of the numbers of the row and the column of the 
square the pawn is on either decreases by 2 or increases by 1. Thus, the remainder 
of this sum when divided by 3 increases by 1 each time. Since there are n 2 -1 moves 
in all, and the final sum must be 1 more than the original, we get that n 2 - 2 must 
be divisible by 3. This is impossible (a perfect square cannot have a remainder 2 
when divided by 3) and therefore such a route for the pawn is impossible. 

Remark. We would like to draw your attention to the fact that we did not 
use the word "invariant" in this solution. However, some quantity is invariant. Can 
you find it? 

23. Since the sum in each row is 1, and we have m rows, the sum of all the numbers 
in the table is m. On the other hand, the sum in each column is 1, and the table 
has n columns. Hence, the sum of the numbers is n. But the sum of the numbers 
in the table does not depend on the way it is calculated (in this sense, this problem 
concerns the idea of invariant). Therefore, m = n. 
24. The answer is no. Hint: use the parity of the number of glasses standing upside 
down as the invariant. 

25. Let us mark four vertices of the cube such that no two of them are connected 
by an edge (this is not difficult). Then consider the difference between the sum 
of the numbers on the marked vertices and the sum of the numbers on the other 
vertices. This difference is invariant under the operations described. Using this 
invariant, we can easily prove that the answer to both questions is negative. 
26. Let us number the sectors with the numbers 1 through 6 in the clockwise 
direction starting at some sector. Then consider the difference between the sum of 
the numbers in sectors 1, 3, and 5, and the sum of the numbers in the sectors 2, 
4, and 6. This quantity is invariant, and its initial value is ±1. Thus, it cannot be 
equal to 0, and the answer is negative. 
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27. We can only obtain cards (a, b) such that a< band b - a is divisible by 7. 

28. The answer is no. Let us introduce the quantity S equal to the sum of the 
number of stones and the number of heaps. It is not hard to show that S is invariant, 
and its initial value is 1002. If there are k heaps with exactly 3 stones in each of 
them, then the value of S is k + 3k = 4k, which cannot be equal to 1002, since 1002 
is not divisible by 4. 

29. The answer is no. Hint: use the following quantity as an invariant: the parity 
of the number of pairs (a, b) where the number a occupies the place to the right of 
the number b and a > b. 

30. The sum of the squares of the numbers in a trio does not change after any of 
the operations described. Using this quantity as the invariant, we can easily see 
that the answer is no (the values of the invariant for the given trios are different: 
6 + 2y'2,;, 13/2). 

13. GRAPHS-2 

2. Since there are 4 edges leaving four of the vertices we conclude that each of these 
is connected with every other. But that would mean that the fifth vertex is also 
connected with all the other vertices; that is, its degree is also 4. This contradiction 
completes the proof. 

3. Hint: use induction on n. The base (n = 1) is easy. To prove the inductive step, 
consider graph G with 2n vertices which satisfies the condition of the problem, and 
add to it two other vertices A and B which, so far, are not connected to any of G's 
vertices. Graph G has two families Vi and V2 of vertices each containing n vertices 
with degrees equal to 1, 2, ... , n. Connect one of the new vertices-say, A-to 
all vertices of family Vi and to the vertex B. The resulting graph is a graph with 
2n + 2 vertices satisfying the required condition. 
4. a) Yes, since in such a graph each vertex is connected with every other; that is, 
the graph is isomorphic to the complete graph with 10 vertices. 

b) No-see Figure 155. 

FIGURE 155 

c) No-see Figure 156. 
5. Assume that such a deletion is possible. If this edge connects two vertices with 
equal degrees, then each of the connected components would have an odd number 
of odd vertices, which is impossible. Otherwise, only one component will have a 
vertex with degree 2, and the components cannot be isomorphic. 

9. Consider any of the connected components of the given graph. It is not a tree 
since it does not contain a pendant vertex. Therefore, it contains a cycle. 
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FIGURE 156 

10. Suppose the ends of the deleted edge are connected by a simple path in the 
new graph. Then this path together with the deleted edge gives us a cycle in the 
old graph-a contradiction. 

12. Hint: if it were not a tree, then we could obtain a tree from it by deleting some 
edges. 

14. The total number of roads in the country is (32°). Since the number of edges 
in a tree with 30 vertices is 29 we get the answer: 30 · 29/2 - 29 = 406. 

15. Hint: take a maximal tree of the given graph and delete any of its pendant 
vertices. 

16. Hint: let us consider any maximal tree of the graph. Then double each edge of 
this tree (there are 99 of them). Though the result is not exactly a graph, Euler's 
theorem about drawing a graph with a pencil without lifting it from the paper 
applies to this "multi-graph" as well. 

17. Consider the planar graph whose vertices are the lakes, whose edges are the 
canals, and whose faces are the islands. Since V - E + F = 2, V = 7, and E = 10, 
we have F = 5. However, one of the faces is the outer face, which is not an island. 
Answer: 4. 

19. Hint: every face is bounded by at least three edges. 

24. The inequality 3V - 6 ~ E does not hold true for this graph, and therefore 
this graph is not planar. 

25. Assume the opposite. Then 2E ~ 6V; that is, E ~ 3V, which contradicts the 
proved inequality. 

26. Suppose both graphs are planar. Then they have no more than (3 · 11 - 6) + 
(3 · 11 - 6) = 54 edges together. However, the complete graph with 11 edges must 
have 55 edges, and we have a contradiction. 

27. Hint: first, prove the inequality E $ 3V - 6 using the fact that the degree of 
every vertex is at least 3. Denoting the number of pentagons by a and the number 
of hexagons by b, we have 5a+ 6b+7 = 2E $ 6F-12 = 6(a+ b+ 1)-12. Hence, 
a~ 13. 

29. a) No, since the graph has 12 odd vertices, which means that we need at least 
6 paths to form the grid. · 

b) Yes, it is possible. We leave it to the reader to construct an example. 

30. The graph formed by the circles (the points of intersection are its vertices, and 
the arcs of the circles are its edges) is connected, and all the degrees of its vertices 
are even. 

31. The proof can be carried out using induction on n. The base n = 0 is obvious. 
To prove the inductive step we choose two odd vertices A and B and connect them 
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mentally with a new edge. After that the new graph has only 2n - 2 odd vertices 
and can be drawn in such a way that the pencil will be lifted exactly n - 1 times. 
When, in the process of this drawing, we must go along the mentally added edge 
AB (which does not really exist), we simply lift the pencil from paper and put it 
down at the other end of this edge. 

32. Hint: find two scientists who are not acquainted, and consider all the people 
they are acquainted with. 

33. Assuming the opposite, we have that for any number 68 through 101 there are 
exactly three students who have exactly so many acquaintances. Then the number 
of students having an odd number of acquaintances is odd, which is impossible. 

34. Hint: let us connect these two vertices by a path. Then, if its length is a, the 
distances from any vertex to these two must differ by a number of the same parity 
as a. 

35. Hint: prove that any tree with 6 vertices is isomorphic to one of the graphs 
shown in Figure 157 . 

• • • • • • . . . I • 

+ .i-r 
• • I • • 

FIGURE 157 

36. a), b) These items are corollaries to items c) and d). 
c) Let us assume the opposite. Consider an arbitrary town X and a town A 

which cannot be reached from X by airplane with no more than one transfer, and 
a town B which cannot be reached by train with no more than one transfer. Now, 
notice that the towns A and B are connected by some kind of transportation. We 
can assume without loss of generality that A and B are connected by train. By 
assumption X and A are connected directly by train, and, therefore, we can reach 
B from X by train by transferring at A, which is a contradiction. 

d) Hint: suppose we cannot fly from A to B with no more than two transfers, 
and we cannot go by train from C to D with no more than two transfers. Consider 
the graph formed by these four towns. 

37. See Problem 28 from the chapter "The Pigeon Hole Principle". 

38. Take an arbitrary vertex and notice that there are at least 6 edges of the same 
color leaving it. Now use the result of Problem 37. 



260 MATHEMATICAL CIRCLES (RUSSIAN EXPERIENCE) 

39. Suppose there is a vertex with 6 blue edges leaving it. Then we can use the 
result of Problem 37. If there is a vertex with no more than 4 blue edges leaving 
it (it is impossible for all nine vertices to have five blue edges leaving them), then 
there are at least 4 red edges leaving it. 

40. There are no less than 9 edges of the same color leaving any given vertex. Now 
use the result of Problem 39. 

42. Denote the number of the roads entering the capital by a. Then the total 
number of all "incoming" roads is equal to 21 · 100 + a, and the total number of 
"outgoing" roads is no more than 20 · 100 + (100 - a). Therefore 21 · 100 +a ~ 
20 · 100 + (100 - a); that is, 2a ~ 0. Finally, a= O. 

43. Hint: number the towns and mark each road as one-way in the direction leading 
from the town with the smaller number to the town with the greater number. 

44. Hint: first, consider the vertices connected with the chosen vertex A, then 
the new vertices connected with these, et cetera. In the process of extending this 
"web" (as long as it is possible) we orient the edges which connect the newly added 
vertices with the older ones in the direction from the older to the newer endpoints. 

45. Hint: consider an Euler path passing through all the edges of the graph and 
orient the edges according to their order in the cycle. 

46. Hint: prove that there exists a closed path along the arrows which passes along 
each edge exactly once. This can be done by considering the closed path with the 
largest possible number of edges. 

48. Assume that team A won the tournament. If there exists a team which defeated 
A as well as all the teams who lost to A, then this team would have scored more 
points than A, which is impossible. This proves both parts of the problem. 

49. Hint: proceed by induction on the number of towns. The base (for three towns) 
can be proved using a simple case-by-case analysis. Tu prove the inductive step, 
temporarily remove the town which has roads both entering it and leaving it. 

50. We prove this by induction on the number of teams n. The base n = 2 is easy. 
To prove the inductive step let us temporarily remove one of the teams X and 
number the other n - 1 teams as required. If X has defeated team 1 or has lost to 
team n- 1, then we can easily add X to the chain. Assuming the opposite we have 
that X lost to team 1 and defeated team n - l. Therefore there must exist such an 
integer k that X lost to team k and defeated team k + 1-otherwise X must have 
lost to team 2, therefore to team 3, therefore to team 4, et cetera. Having found 
such a k we can insert X into the existing chain by "cutting in" between teams k 
and k + 1 and create the chain of teams we need. 

51. Suppose A and B won an equal number of games, and B defeated A. Then if 
every team C which lost to A also lost to B, then B must have more points than 
A. Thus, there exists a team C such that A defeated C but C defeated B. 

52. Hints: a) If we cannot reach town B from town A consider the towns where 
the roads leaving A lead, together with the towns where the roads entering B leave 
from. 

b) Using the same notation as before we can assume that there is no road 
A -+ B, and that there is no town C such that there are roads A -+ C and C ....., B. 
Let us find the forty towns A1, A2 , •.• , A40 that the roads leaving A lead to, and 
forty other (!) towns Bi. B2 , ••. , B40 that the roads coming to B come from. 
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There are 1600 roads which leave the towns A;. At the same time the total number 
of roads connecting A; with each other does not exceed 40 · 39/2 = 780, and the 
number of the roads leaving from them to the remaining 19 towns is no more than 
40 · 19 = 760. Since 1600 > 1540 = 780 + 760 it follows that there must be a road 
from A; to Bj. 

53. Hint: if we have removed the edge between vertices A and B, then let us choose 
two arbitrary vertices and consider three cases: none of these vertices coincides with 
A or B; one of them is either A or B; or in fact they are A and B. 

14. GEOMETRY 

1. Hint: try to find the possible length of the third side in a triangle whose two 
sides have lengths a and b. 

2. Hint: prove the inequalities AM> AB - BC/2 and AM> AC- BC/2. 

3. Consider the circle inscribed in the triangle and the lengths of the resulting 
segments when the meeting points divide the sides of the triangle. We have three 
pairs of equal segments, whose lengths are the required x, y, and z. 

4. Let us assume the opposite. Then one of the angles is larger than the other 
one, and the corresponding side must be longer than the other. This contradiction 
completes the proof. 

5. Hint: use the inequalities LBAM < LABM and LCAM < LACM. 

6. This is a simple exercise in the use of Inequality N21. If a + b > c, then 
a+ 2Vab + b > c, or (y'a + Jii)2 > (y'C) 2 , and via+ Jii >JC. 
7. Since AB +CD < AC+ BD (by the way, why?) we can obtain the required 
result by adding this inequality to the inequality given in the statement of the 
problem. 

9. Since LA> LA1 we have BD > B1D1, and hence LC> LC1. If LB> LB1 , 

then similarly LD > LD1 which is impossible since the sum of the angles' measures 
in the quadrilaterals must be the same. 

10. Hint: construct parallelogram ABCD, three vertices of which coincide with 
the vertices of triangle ABC, by extending the median its own length to D. Then 
apply Inequality N2 2. 

11. Answer: No. It would follow from Inequality N22 that LBAC > LBCA = 
LDCE > LDEC = ... > LKAI = LBAC-which is a contradiction! 

12. a) Hint: place three copies of the triangle on the plane so that their legs 
coincide. Then look for an equilateral triangle. 

b) Find point Eon side AB such that AE = AC. Then prove that EB > 
CE>AC. 

13. Hint: if we denote the outer perimeter by a, the perimeter of the star by b, and 
the inner perimeter by c, then a > c, a + c < b, and 2a > b. Now a case-by-case 
analysis completes the proof. 

14. "Fold out" the perimeter of the quadrilateral as shown in Figure 158. 

15. In three steps move the second triangle so that all three of its vertices coincide 
with the vertices of the first triangle (one vertex at a time). 
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FIGURE 158 

16. a) Prove that any point D will be fixed. 
b) Apply the result of a). 

17. a) Answer: this is a translation again. 

D'" 

c D' 

D 

b) Take two parallel lines which are perpendicular to the direction of the trans­
lation and such that the distance between them equals half the length of the trans­
lation. 

c) This motion cannot be a rotation since there is no point which is left in 
place. It cannot be a translation since the distance between a point and its image 
is not constant. And, finally, it is not a line reflection: if it were, then for any 
point A and its image A' the perpendicular bisector of segment AA' would be some 
constant line not dependent on the choice of point A. 

18. The answer is yes. It suffices to map one of the centers onto the other. 

19. Only the identity rotation can map a half-plane onto itself: otherwise where 
would the boundary go? A line reflection can do it if the line is perpendicular to 
the boundary of the half-plane. 

20. Yes, this is true. Indeed, the composition of eight such rotations is a rota­
tion of 24 degrees about the same point. Further, the composition of three such 
superpositions will be a rotation of 72 degrees about point 0. 
21. Hint: reflect the triangle in the given point. Where the triangle and its image 
coincide are the endpoints of the required segment. 
22. Hint: use a translation. 

24. Hint: since the lines (AB), (CD), and (MN) meet at one point, the reflection 
in line (MN) maps lines (AB) and (CD) onto each other. 

25. Hint: use a rotation of 90 degrees which maps the square onto itself. 

26. Hint: use a rotation of 60 degrees about point P, and look at the point where 
the first line and the image of the second line meet. 

27. a) Hint: if the two given points X and Y are on different sides of line L, then 
M = (XY) n L; else M = (XYi) n L, where Y1 is symmetric to Y with respect to 
L. 

b) Hint: if X and Y lie on different sides of L, then M = (XY) nL; otherwise, 
M = (XY1) n L, where Y1 is symmetrical to Y with respect to L. 

28. Hint: reflect the first axis in the second. Prove that the image must be an 
axis of symmetry for the triangle. Also, show that the two original lines cannot be 
perpendicular. 
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~aj~~~~~~~~~~~~~~~~ 
b) H, I, N, 0, S, X, Z. 

The answers depend on how you write the letters. Here we use the standard roman 
typeface. 

30. The answer is no. See the hint to Problem 28. 

31. Hint: these are the points from which segment OS ( 0 is the center of the 
rotation) subtends an angle of goo+ oi/2 or goo - oi/2 (oi is the angle of rotation). 
The reader can try to describe this locus more precisely. 

34. No. Hint: if two angle bisectors were perpendicular, then the sum of these two 
angles of the triangle would be 180°. 

35. Let line L be the common perpendicular to lines AB and CD, which passes 
through the center of the circle. Then segments AC and BD are symmetric with 
respect to line L. 

36. Hint: the sum of two opposite angles in an inscribed quadrilateral must be 180 
degrees. Answer: 60, go, and 120 degrees. 

38. It is not difficult to see that the measure of angle AOD is 60°. Further, triangle 
DOC is isosceles, so LDOC = 75°. Therefore, LAOC = 135°. 
3g. Angles ABC and ABD are equal to go0 . Thus LCBD = 180°. 

40. a) Let a= IABI, b = IBCI, c = ICDI, and d = IDAI. Then bis not greater than 
the altitude to AB in triangle ABC. Hence S(ABC) :::; ab/2, and S(CDA) :::; cd/2. 
Adding these inequalities, we are done. 

b) Use a) and the fact that quadrilateral ABC D can be turned into a quadri­
lateral with the same area but with the sides in a different order: a, b, d, and c 
(just cut it along diagonal AC and "turn over" one of the halves). 

42. Since bc/2 ;::: 1 we get b2 ;::: 2. 

43. Yes, this is possible. Consider triangle ABC, where AC = 2002 + e, and 
AB= BC = 1001 (where e is some sufficiently small positive number; for example, 
€ = 0.1). 
44. Cut ABC D along diagonal AC and prove this equality for each of the halves 
separately. Do not forget that the sides of K LM N are parallel to the diagonals of 
ABCD. 

45. It is not difficult to show that the area of a quadrilateral whose diagonals are 
perpendicular is half the product of the diagonals (the result for a rhombus, given 
in many regular texts, is a special case). Here, IABCDI = 12. 
46. Answer: 7. Hint: prove that the area of each of the three additional triangles 
is 2. 

47. The equality of the areas is equivalent to the equality of the altitudes dropped 
to BM from A and C respectively. This, in turn, is equivalent to the assumption 
that BM bisects AC. 

48. Use the result of Problem 44. 

4g. Hint: prove that triangles ABD and ACD have the same area. 

50. If we are given point 0 inside equilateral triangle ABC, then we can calculate 
the area of ABC as the sum of the areas of triangles OAB, OBC, and OAC. These 
areas can be found using the perpendiculars dropped from 0 to the sides of the 
triangle. 
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55. No, he is wrong. For example, we can prove that there are points on the plane 
satisfying the given property and lying arbitrarily far from the given point (in fact, 
the given set is a parabola). 

56. The reason why the proof is wrong is that the figure is wrong, and point M 
lies outside the triangle. 

57. Since P is equidistant from A and B as well as from C and D we have that 
triangles PAD and PBC are congruent. Thus, medians PM and PN in these 
triangles are equal as well. 

58. One way to do this is to prove that this perpendicular bisector divides the 
greater leg of the triangle into two segments such that the length of one of them 
equals the length of the specified part of the bisector, and the other one is twice as 
long. Or, the lengths can be calculated directly, in terms of one of the sides of the 
original triangle. 

59. Hint: make use of the fact that each of the segments of this broken line is a 
median to the hypotenuse in some right triangle and therefore equals half of this 
hypotenuse. 

15. NUMBER BASES 

Answers to the exercises 

1. a) 2; b) n. 

2. 101012 = 21, 101013 = 91, 2114 = 37, 1267 = 69, 15811 = 184. 

3. 10010 = 11001002 = 102013 = 12104 = 4005 = 244" = 2027 = 144s = 1219. 

4. lllw =Alu. 

5. Here is the multiplication table in the base 5 number system: 

0 1 2 3 4 

6. a) 110012; b) 212023. 

7. a) 26267; b) 10037. 

Problems 

0 (0 1 0 
2 0 
3 0 
4 0 H ! !l 

1. Answer: in the base 12 system (duodecimal system). Hint: digits 3 and 4 always 
represent numbers 3w and 4w, and their product equals 12w. 

2. a) Yes, such a system exists. This is the base 7 system. See the hint to the 
previous problem. · . 

b) Answer: No. This equality could be true only in the base 5 number system, 
but there is no digit 5 in this system. 

3. A number is even if and only if 
a) there is an even number of l's in its base 3 representation (that is, the sum 

of its digit is even). Indeed, a number equals the sum of powers of 3 multiplied by 
the digits, which can be 0, l, or 2. The summands with digits O and 2 are even, 
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and therefore the parity of the sum depends on the number of the summands with 
digits l. 

b) for even n its base n representation ends with an even digit; for odd n the 
sum of its digits is even. The proof for the latter case is similar to the proof for 
part a). In case of even n, when a number is represented as a sum of powers of n 
multiplied by its digits, all summands starting from the second are even since they 
are divisible by n. Therefore, the parity of the sum is determined by the parity of 
the units digit. 

4. The answer is 23451+15642 = 42423 (the base 7 number system). 

5. Let n be the base of the system. Then n2 = (2n + 4) + (3n + 2); that is, 
n2 - 5n -6 = 0. Therefore n = -1 or n = 6. Answer: n = 6. 

6. a) In the base n number system the representation of a number ends with k 
zeros if and only if this number is divisible by nk. 

b) Let m be some divisor of n. The last digit of the base n representation of a 
number is divisible by m if and only if the number itself is divisible by m. 

7. a) Let m be a divisor of n - l. Then the sum of the digits in the base n 
representation of a number is divisible by m if and only if the number itself is 
divisible by m. 

b) The "alternating" sum (with alternating signs) of the digits in the base n 
representation of a number is divisible by n + 1 if and only if the number itself is 
divisible by n + l. 

c) Let m be some divisor of n+ l. The alternating sum (with alternating signs) 
of the digits in the base n representation of a number is divisible by m if and only 
if the number itself is divisible by m. 

12. Hint: the subset is the same as in Problem 11. 

13. a) This is the same game of Nim, with eight heaps instead of three. The 
strategy and the proof are exactly the same. However, there is another, much 
simpler proof which shows that the second player wins. Indeed, all the second 
player must do is to maintain line symmetry on the board (with respect to the line 
separating the fourth and the fifth columns). 

b) The second player cannot lose. The reason is the same as before. Actually, 
this game has nothing to do with the game of Nim-it is just a joke. In fact, this 
game can last forever, but this is not important. 

16. INEQUALITJES 

2. a) We have 32 = 9 > 8 = 23 , and therefore 3200 > 2300 . 

b) We have 210 = 1024 < 2187 = 37, and therefore 2•0 < 328 . 

c) The number 4 53 is greater. 

4. Answer: 891 > 792 • 

6. Answer: 123 - 32 1 = 1, 133 - 52 1 = 2, 162 - 25 1 = 4, 133 - 25 1 = 5, 127 - 53 1 = 3, 
1112 - 531=4, and 1112 - 271=7. 

8. Let us denote the number in the numerator of either fraction by x. Then the 
fraction itself is a= x/(lOx - 9), so that l/a = 10 - 9/x. This implies that as x 
increases, a decreases. Thus the first fraction is greater. 
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9. Let us answer the more general question: when isx/y greater than (x+l)/(y+l)? 
If x and y are positive, then 

x-y 
y(y+l). 

Hence everything depends on whether or not xis greater than y. In our case y > x, 
which means that 1234568/7654322 is the greater of the two given numbers. 

10. The number 100100 is greater, since 1002 > 150 · 50. 
11. Answer: (1.01) 1000 > 1000. Indeed, (l.01)8 > 1.08; (1.01)1000 = ((1.01)8) 125 >" 
(1.08)125 . FUrthermore, (l.08)5 > 1.4; (1.01)1000 > (1.4)25 > (1.4)24 > (2.7)8 > 
7' = 2401 > 1000. 

13. Since 99! > 100, it is clear that A < B. 
17. We can write 1 + x - 2y'x = ( y'x - 1)2 ;:: O. 
19, 20. Carrying everything over to one side, we can reduce the given inequality 
to (x - y) 2 2: 0. 

21. Carrying everything over to one side and multiplying by the denominator we 
have (x - y) 2 2: 0. 

23. Multiply the following three inequalities: a+ b 2: 2Vab, b + c 2: 2VbC, c + a 2: 
2v'Cii. 
24. Hint: use the fact that ( v'aii - ,/Oi;)2 + (,/Uc- y'b(;)2 + ( y'bC - v'aii)2 ;:: O. 

25. We have x 2 + y2 + 1 - xy - x -y = ((x -y)2 + (x - 1)2 + (y - 1)2)/2;:: O. 

27. We have x4 + y4 + 8 = x4 + y4 + 4 + 4 2: 4 {/x4y4 • 4 · 4 = 8xy. 

28. We can write a+b+c+d 2: 4~; l/a+ l/b+l/c+ l/d 2: 4{/l/abcd. Now 
we just multiply these inequalities. 
29. a/b + b/c + c/a "?:. 3 v~(a-/=b)~·~(-b/_c_) -. (~c/~a~) = 3. 

42. Hint: the inequality can be proved by adding up two simpler inequalities: 

(2k -1)(21 - 1)(2m - 1) > 0, 

2k+l+m > 2k + 2' + 2m ' 

since 2k+l+m > 2k+2 = 4. 2k > 2k + 21 + 2m (if k 2: l 2: m). 

43. We have ab+ be+ ca= ((a+ b+ c)2 - a2 -b2 - c2)/2 = -(a2 + b2 + c2)/2 ~ 0. 

45. Carrying all the terms over to one side we get (x -y)( y'x - JY)/,/XY 2: 0. 
47. Here is the main idea: if the permutation (c;) is not the identity, then there 
exist indices i and j such that c; > c; and i < j. Then by switching c; and c; we 
can increase the sum of the products. Indeed, 

c;a.; + c;a; - c;a; - c;a; =(a; - a;)(c; - c;) < 0. 

Thus, using these transpositions, we can make the permutation (c;) into the identity 
permutation without decreasing the sum of the products during this process. 

53. The base is easy. The proof of the inductive step goes as follows: 1 + 1 / ,/2 + 
... + l/vn=l +l/.fii, < 2vn=l+l/.fii, < 2.fii, since l/.fii, < 2(.fii,-vn=t) = 
2/(.fii, + v'n-1). 
54. The solution is similar to the previous one Qust change the direction of the 
inequalities). 
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58. The base n = 4 can be checked "manually". The inductive step: (n + 1)! = 
(n+l)n! > 2n(n+l) > 2·2n =2n+l. 

59. The base n = 1 is easy. The inductive step: 2n+l = 2.2n > 2·2n = 4n > 2(n+l) 
(if n > 1). 
60. Answer: the inequality holds true for n ?: 10. Hint: you can check that it is 
true directly for 1 :5 n :5 10. To prove the inductive step, show that while 2n+i is 
twice as large as 2n, (n + 1)3 is less than 2n3. 
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experience gained by several generations of 
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